PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inclined Load in Micropolar Thermoelastic Medium Possesing Cubic Symmetry with One Relaxation Time

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analytic expressions for the displacements, microrotation, stresses and temperature distribution on the free surface of micropolar thermoelastic medium possessing cubic symmetry as a result of inclined load have been obtained. The inclined load is assumed to be a linear combination of a normal load and a tangential load. The Laplace and Fourier transforms have been employed to solve the problem. A special case of moving inclined load has been deduced by making the appropriate changes. The variations of the displacements, microrotation, stresses and temperature distribution with the horizontal distance have been shown graphically for both the problems.
Rocznik
Strony
129--157
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
  • Department of Mathematics, Institute of Engineering and Emerging Technologies, Makhnumajra, Baddi, Distt. Solan, H.P, INDIA, 173205
Bibliografia
  • [1] Biot, M.: Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 1956, 27, 240-253.
  • [2] Dhaliwal, R. S and Singh, A.: Dynamic coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India, 1980, p. 726.
  • [3] Eringen, A. C.: Foundations of micropolar thermoelasticity course of lectures, CISM Udine, Springer, 1970, 23.
  • [4] Eringen, A. C.: Plane waves in non-local micropolar elasticity. Int. J. Engg. Sci, 1984, 22, 1113-1121.
  • [5] Fung Y. C.: Foundations of solid mechanics, Prentica Hall, 1968, New, Delhi.
  • [6] Garg N. R, Kumar R, Goel A and Miglani A.: Plane strain deformation of an orthotropic elastic medium using eigen value approach, Earth Planets Space, 2003, 55, 3-9.
  • [7] Green, A. E and Laws, N.: On the entropy production inequality, Arch. Ration. Mech. Anal., 1972, 45, 47-53.
  • [8] Green, A. E and Lindsay, K. A.: Thermoelasticity, J. Elasticity, 1972, 2, 1-5.
  • [9] Honig, G. and Hirdes, V.: A method for the numerical inversion of the Laplace transform, J. Comp. Appl. Math., 1984, 10, 113-132.
  • [10] Iesan, D.: The plane micropolar strain of orthotropic elastic solids; Arch. Mech., 1973, 25, 547-561.
  • [11] Iesan, D.: Torsion of anisotropic elastic cylinders, ZAMM, 1974, 54, 773-779.
  • [12] Iesan, D.: Bending of orthotropic micropolar elastic beams by terminal couples, An St . Uni . Iasi, 1974, 20, 411-418.
  • [13] Kumar, R. and Ailawalia, P.: Behaviour of micropolar cubic crystal due to various sources, Journal of sound and vibration, 2005, 283, 3-5, 875-890.
  • [14] Kumar, R. and Ailawalia, P.: Deformation in Micropolar cubic crystal due to various sources, Int. J. Solids. Struct., 2005, 42, 5931-5944.
  • [15] Kumar, R. and Ailawalia, P.: Moving inclined load at boundary surface, Applied Mathematics and Mechanics, 2005, 26, No. 4, 76-485.
  • [16] Kumar, R. and Ailawalia, P., Interactions due to inclined load at micropolar elastic half-space with voids, Int. J. Appl. Mech. Engg., , 2005, 10, No. 1, 109-122.
  • [17] Kumar, R. and Choudhary, S.: Influence and Green's function for orthotropic Micropolar continua, Archives of Mechanics, 2002, 54, 185-198.
  • [18] Kumar, R. and Choudhary, S.: Dynamical behavior of orthotropic Micropolar elastic medium, Journal of vibration and Control, 2002, 8, 1053-1069.
  • [19] Kumar R. and Choudhary S.: Mechanical sources in orthotropic micropolar continua, Proc. Indian. Acad. Sci(Earth Plant. Sci.), 2002, 111, 2, 133-141.
  • [20] Kumar, R. and Choudhary, S.: Response of orthotropic micropolar elastic medium due to various sources, Meccanica, 2003, 38, 349-368.
  • [21] Kumar R. and Choudhary S.: Response of orthotropic micropolar elastic medium due to time harmonic sources, Sadhana , 2004, Part I 29 83-92.
  • [22] Kumar, R. and Rani, L.: Elastodynamics of time harmonic sources in a thermally conducting cubic crystal, Int. J. Appl. Mech. Engg., 2003, 8, No. 4, 637-650.
  • [23] Kuo, J. T.: Static response of a multilayered medium under inclined surface loads, J. Geophysical Research,, 1969, 74, No. 12, 3195-3207.
  • [24] Lord, H. W and Shulman, Y.: A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 1967, 15, 299-306.
  • [25] Minagawa, S., Arakawa, K, and Yamada, M.: Dispersion curves for waves in a cubic micropolar medium with reference to Estimations of the Material constants for Diamond. Bull. JSME., 1981, 24, No. 187, 22-28.
  • [26] Muller, J. M.: The coldness a universal function in thermoelastic bodies, Arch. Ration. Mech. Anal., 1971, 41, 319-332.
  • [27] Nakamura S. Benedict R and Lakes R.: Finite element method for orthotropic micropolar elasticity ; Int . J. Engg . Sci, 1984,22, 319-330.
  • [28] Nowacki, M.: Couple-stresses in the theory of thermoelasticity, Proc. IUTAM Symposia, Vienna, Editors H, Parkus and L.I Sedov, Springer-Verlag, 1966, 259-278.
  • [29] Press,W. H., Teukolsky, S. A., Vellerling,WT and Flannery, B P.: Numerical Recipes, Cambridge: Cambridge University Press, 1986.
  • [30] Suhubi, E. S.: Thermoelastic solids in A C Eringen (Ed.), Continuum Physics, 1975, 2, Academic Press, New York, Part 2, Chapter 2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0011-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.