PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lattice Structures for Synthesis and Implementation of Wavelet Transforms

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the novel lattice structure composed of homogeneous invertible two-point operations which are connected in regular and simple structure is proposed. Further on the pipeline scheme for implementation of such a structure is presented. It is proved with the orthogonal variant of the presented scheme that with respect to the computational complexity it is equivalent to the lifting technique. It means that the proposed scheme belongs to the class of the most effective algorithms for calculation of orthogonal wavelet transforms. The variant of the lattice structure with simplified two-point operations is also proposed. Finally the fundamentals of the synthesis of lattice structure coefficients with the aid of artificial neural networks and some aspects of lattice structures implementation on basic computational architectures are discussed.
Rocznik
Strony
133--141
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
Bibliografia
  • [1] Daubechies I.: Ten Lectures on Wavelets, SIAM, 1992.
  • [2] Chen Y., Oraintara S.: Multiplierless Approximation of Transform With Adder Constraint, IEEE Signal Processing Letters, vol. 9, nr 11, pp. 344-347, 2002.
  • [3] Yatsymirskyyy M.: Synteza przekształceń falkowych dla mobilnych systemów e-gospodarki; [in:] Wybrane problemy gospodarki elektronicznej, Łódź, pp. 273-282, 2008.
  • [4] Lipinski P., Yatsymirskyy M.: On Synthesis of 4-tap and 6-tap Reversible wavelet Filters, Przeglad elektrotechniczny, nr 12, pp.284-286, 2008.
  • [5] Daubechies I., Sweldens W.: Factoring Wavelet Transform into Lifting Steps, The Journal of Fourier Analysis and Applications, vol. 4, nr 3, pp. 245-267, 1998.
  • [6] Sweldens W.: The lifting scheme: A construction of second generation wavelets, SIAM Journal on Mathematical Analysis, vol. 29, nr. 2, pp. 511-546, 1998.
  • [7] Lipiński P., Yatsymirskyy M.: Efficient 1D and 2D Daubechies Wavelet Transforms with Application to Signal Processing, Lecture Notes for Computer Science, 4432, Berlin Heidelberg, pp. 391-398, 2007.
  • [8] Cooklev T.: An Efficient Architecture for Orthogonal Wavelet Transforms, IEEE Signal Processing Letters, vol. 13, nr. 2, pp.77-79, 2006.
  • [9] Huang C., Tseng P., Chen L.: Analysis VLSI Architecture for 1-D and 2-D Discrete Wavelet Transform, IEEE Trans. Signal Process., vol. 53, nr 4, pp.1575-1586, 2005.
  • [10] Olkkonen H., Olkkonen J.T., Pesola T., Efficient Lifting Wavelet transform for Microprocessor and VLSI Applications, IEEE Signal Processing Letters, vol. 12, nr 2, pp.110-112, 2005.
  • [11] Jacymirski M., Szczepaniak P. S.: Neural Realization of Fast Linear Filters; [in:] Proc. of 4th EURASIP-IEEE Region\&International Symposium on Video/Image Processing and Multimedia Communications, Zadar, Croatia, pp. 153-157, 2002.
  • [12] Stasiak B., Yatsymirskyy M., Fast Orthogonal Neural Networks, Artificial Intelligence and Soft Computing - ICAISC`06, Springer, pp. 142-149, 2006.
  • [13] Stokfiszewski K., Szczepaniak P.: An Adaptive Fast Transform Based Image Compression, ICAISC 2008, LNAI 5097, Springer, pp. 874-885, 2008.
  • [14] Szczepaniak P.S.: Obliczenia inteligentne, szybkie przekształcenia i klasyfikatory, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2006.
  • [15] Gonzalez R.C.,Woods R.E.: Digital Image Processing, Pearson Education, Inc.- Prentice Hall, 2002.
  • [16] Lipiński P., Yatsymirski M.: Application of Hybrid Fourier Wavelet Transform to Data Space Reduction in Clothing Sales Volume Time Series, Journal of Applied Computer Science, vol. 16, nr 1, pp.81-88, 2008.
  • [17] Rabiner L., Gold B.: Theory and Application of Digital Signal Processing, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0009-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.