PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Supervised Object Classification Using Adaptive Active Hypercontours with Growing Neural Gas Representation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a new classifier induction method is proposed. It is based on Hebbian-like competitive learning idea and modified Adaptive Active Hypercontour algorithm- recently suggested as general purpose classifier induction technique. Adaptive neural networks utilising Growing Neural Gas algorithm are here used as reference implementation aiming to ease induction process in high-dimensional spaces. Presented work focuses on supervised classification problem: textual document classification and transformer malfunction recognition have been chosen as evaluation fields.
Rocznik
Strony
67--80
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Technical University of Lodz Institute of Computer Science ul. Wolczanska 215, 90-924 Lodz, Poland, michalp@ics.p.lodz.pl
Bibliografia
  • [1] Caselles V., Kimmel R., Sapiro G.: Geodesic Active Contours, in: International Journal of Computer Vision, 22(1), 1997, pp. 61-79.
  • [2] Fritzke B.: A growing neural gas network learns topologies, in: Tesauro G, Touretzky DS, Leen TK (eds) Neural Information Processing Systems, MIT Press, vol 7, 1994, pp. 625-632.
  • [3] Haykin S.: Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York, 1994.
  • [4] International Electrotechnical Commission: Interpretation of the Analysis of Gases in Transformers and other Oil-Filled Electrical Equipment in Service. Geneva, 1979.
  • [5] Kass M., Witkin W., Terzopoulos D.: Snakes: Active Contour Models, in: International Journal of Computer Vision, 1988, pp. 321-331.
  • [6] Rudnicki M., Szczepaniak P.S., Cholajda P.: Genetic Algorithm as a Tool for Solving Electrical Engineering Problems. in: K.Miettinen, P.Neittaanmäki, and J.Périaux (Eds.), Evolutionary Algorithms in Engineering and Computer Science, Chapter 13, John Wiley & Sons, Chichester, 1999, ISBN 0 471 999 0 24, pp. 261- 281.
  • [7] Szczepaniak P.S.: Fuzzy and Genetic Approach to Diagnosis of Power Transformers. in: Preprints of the 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, vol. 1, Budapest, Hungary, 2000, pp. 428-433.
  • [8] Szczepaniak P.S.: Preprocessing of Chromatographic Data Reflecting State of Power Transformers. in: Proceedings of the FSKD'02 Conference, Singapore, 2002.
  • [9] Szczepaniak P.S., Cholajda P.: Genetic interpretation of DGA results in power transformers. in: Proceedings. Int. Conf. SSCC'98: Advances in Systems, Signals, Control and Computers, Durban, South Africa, 1998, vol. II, pp. 216-220.
  • [10] Szczepaniak P.S., Rudnicki M.: Soft-Computing Methods for Diagnosis and Design of Electrical Devices. in: Proceedings of IEEE Africon'99, Cape Town, South Africa, 1999, vol.2, pp. 753-758.
  • [11] Szczepaniak P.S., Sasiak K.: Zastosowanie adaptacyjnych sieci logicznych do diagnostyki transformatorów. (Applications of adaptive logical networks to diagnosis of power transformers) (in Polish). in: Pomiary, automatyka, kontrola. 9(2005), ISSN 0032-4110, pp. 206-209.
  • [12] Szczepaniak PS., Tomczyk A., Pryczek M.:Supervised web document classification using discrete transforms, active hypercontours and expert knowledge. in: Zhong N, Liu J, Yao Y, Wu JL, Lu S, Li K (eds): Web Intelligence Meets Brain Informatics. First WICI International Workshop, WImBI 2006, Beijing, China, 15-16 December 2006, Revised Selected and Invited Papers, LNCS 4845, LNAI, ISBN: 978-3-540-77027-5, Springer, 2007, pp. 305-323.
  • [13] Tomczyk A. Active hypercontours and contextual classification. in: 5th International Conference on Inteligent Systems Design and Applications (ISDA), IEEE Computer Society Press, 2005, pp. 256-261.
  • [14] Tomczyk A., Szczepaniak PS.: Adaptive potential active hypercontours, in: 8th International Conference on Artificial Intelligence and Soft Computing (ICAISC). Zakopane. Poland, Springer-Verlag, Berlin. Heidelberg, 2006, pp 692-701.
  • [15] Tomczyk A., Szczepaniak P.S.: On the Relationship between Active Contours and Contextual Classification, in: 4th International Conference on Computer Recognition Systems (CORES), Poland, Springer, 2005, pp. 303-311.
  • [16] Tomczyk A., Szczepaniak PS., Pryczek M.: Active contours as knowledge discovery methods. in: Discovery Science, Proceedings of 10th International Conference on Discovery Science (DS 2007), Sendai, Japan, October, 1-4 2007. LNCS 4755, LNAI, ISBN 978-3-540-75487-9. Springer, 2007.
  • [17] Wiebe J., Wilson T., Cardie C.: Annotating expressions of opinions and emotions in language. in: Language Resources and Evaluation (formerly Computers and the Humanities), volume 39, issue 2-3, 2005, pp. 165-210.
  • [18] Multi-Perspective Question Answering Corpus, release 1.2: http://www.cs.pitt.edu/mpqa
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD8-0002-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.