PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hall effect on magnetohydrodynamic viscoelastic free convection flow with mass transfer through a porous medium near an infinite vertical porous plate

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study is devoted to investigate the influences of hall current on unsteady free convection flow of magnetohydrodynamic non-Newtonian viscoelastic incompressible fluid with mass transfer over an infinite vertical porous plate. The system is stressed by uniform magnetic field acting in a plane, which makes an angle α with the plane transverse to the plate over an infinite vertical porous plate. The Walter's model is used to characterize the non-Newtonian fluid behavior. Similarity solution for the transformed governing equations is obtained with prescribed variable suction velocity. Numerical results for the details of the velocity, temperature and concentration profiles are shown on graphs. Excess surface temperature as well as concentration gradient at the wall have been presented for different values of the elasticity parameter n0, magnetic parameter M, Schmidt number Sc, Grashof number Gr, modified Grashof number Gc, Hall parameter m, Dufour number Df, Soret number Sr and permeability parameter k*.
Rocznik
Strony
185--201
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Math. Department, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
autor
  • Math. Department, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
autor
  • Math. Department, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
autor
  • Math. Department, Faculty of Education, Ain Shams University, Heliopolis, Cairo, Egypt
Bibliografia
  • [1] Y. Jaluria, Natural convection heat and mass transfer. Pergamon press. Oxford [1980].
  • [2] T. Cebect and P. Bradshaw, Physical and computational aspects of convective heat transfer. Springer, Berlin [1988].
  • [3] E. M. Sparrow and J. L. Greg, J. Appl. Mech. 81,133 [1959].
  • [4] J. H. Merkin, J. Fluid Mech. 35,439 [1969].
  • [5] J. R. Lloyd and E. M. Sparrow, Int. J. Heat Mass Transfer 13,434 [1970].
  • [6] G. Whks, Int. J. Heat Mass Transfer 16, 1958 [1973].
  • [7] V. M. Soundalgekar, N. V. Vighnesam and I. Pop. Int. J. Energy Res. 5,213 [1981].
  • [8] M. D. Jahagirdar and R. M. Lahurika, Indian J. Pure Appl. Math. 20, 711 [1989].
  • [9] M. A. Hosain and M. Ahmed, Int. J. Heat Mass Transfer, 33, 571 [1990],
  • [10] A. S. Gupta, Acta Mechanica 22,281 [1979].
  • [11] M. A. Hossain and R. I. M. A. Rashid, J. Phys Soc. Jpn, 56 (1), 97 [1987] ,
  • [12] M. A. Hossain and K. Mohammed, Jpn. J. Appl. Phys. 27 (8), 1531 [1988] ,
  • [13] MD. Addussattar, Int. J. Energy Res. 18,771 [1994].
  • [14] A. Raptis and N. Kafousias, Can. J. Phys. 60, 1275 [1982],
  • [15] N. T. M. Eldabe, and S. N. Sallam, Can. J. Phys. 76, [1998].
  • [16] H. Schilchting. Boundary layer theory, Mcgraw Hill, [1968].
  • [17] G. D. smith, numerical solution of partial differential equations, Clarendon press, Oxford [1985].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.