PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Projective coordinates and compactification in elliptic, parabolic and hyperbolic 2-D geometry

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The result that the upper half plane is not preserved in the hyperbolic case has implications in physics, geometry and analysis. We discuss in details the introduction of projective coordinates for the EPH cases. We also introduce an appropriate compactification for all the three EPH cases, which results in a sphere in the elliptic case, a cylinder in the parabolic case and a crosscap in the hyperbolic case.
Wydawca
Rocznik
Strony
145--158
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
Bibliografia
  • [1] C. B. Bayer and U. C. Merzbach, A History of Mathematics, John Wiley and Sons, New York, 1989.
  • [2] M. Berger, Geometry, II, Universitext, Springer, Berlin, 1987.
  • [3] N. Bourbaki, Elements of the History of Mathematics, Springer, Berlin, 1999.
  • [4] P. Cerejeiras, U. Kahler and F. Sommen, Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains. Math. Methods Appl. Sci. 28 (2005), 1715-1724.
  • [5] J. Cnops, Hurwitz pairs and applications of Mobius transformations, dissertation, Universiteit Gent, Faculteit van de Wetenschappen, 1994.
  • [6] J. Cnops, An Introduction to Dirac Operators on Manifolds, Progr. Math. Phys. 24, Birkhauser, Boston, 2002.
  • [7] R. Courant and H. Robbins, What is Mathematics? An Elementary Approach to Ideas and Methods, revised by Ian Stewart, Oxford University Press, Oxford, 1996.
  • [8] D. Eelbode and F. Sommen, Taylor series on the hyperbolic unit ball, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 719-737.
  • [9] H. Eves, College Geometry, Narosa Publishing House, New Delhi, 1998.
  • [10] P. Fjelstad and S. G. Gal, Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers, Adv. Appl. Clifford Algebr. 11 (2001), 81-107.
  • [11] W. Fulton, Algebraic Topology, Grad. Texts Math. 153, Springer, New York, 1995.
  • [12] T. Gowers, Mathematics: A Very Short Introduction, Oxford University Press, New York, 2002.
  • [13] F. J. Herranz and M. Santander, Conformal compactification of spacetimes, J. Phys. A 35 (2002), 6619-6629.
  • [14] F. J. Herranz and M. Santander, Conformal symmetries of spacetimes, J. Phys. A 35 (2002), 6601-6618.
  • [15] R. Howe and E. C. Tan, Non-Abelian Harmonic Analysis: Applications of SL (2, R), Universitext, Springer, New York, 1992.
  • [16] V. V. Kisil, Analysis in R 1,1 or the principal function theory, Complex Variables Theory Appl. 40 (1999), 93-118.
  • [17] V. V. Kisil, Meeting Descartes and Klein somewhere in a noncommutative space, in: Highlights of Mathematical Physics, American Mathematical Society, Providence (2002), 165-189.
  • [18] V. V. Kisil, Erlangen program at large-1: Geometry of invariants, SIGMA 6 (2010), 076.
  • [19] V. V. Kisil and D. Biswas, Elliptic, parabolic and hyperbolic analytic function theory-0: Geometry of domains, in: Complex Analysis and Free Boundary Flows, Trans. Inst. Math, of the NAS of Ukraine 1 (2004), 100-118.
  • [20] S. Lang, SL(R), Grad. Texts Math. 105, Springer, New York, 1985.
  • [21] P. Lounesto, Clifford Algebras and Spinors, London Math. Soc. Lecture Note Ser. 239, Cambridge University Press, Cambridge, 1997.
  • [22] T Needham, Visual Complex Analysis, Clarendon Press, Oxford, 1997.
  • [23] P. J. Olver, Classical invariant theory, London Math. Soc. Stud. Texts 44, Cambridge University Press, Cambridge, 1999.
  • [24] W. Rossmann, Lie Groups, Oxf. Grad. Texts Math. 5, Oxford University Press, Oxford, 2002.
  • [25] I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Pure and Applied Mathematics 68, Academic Press, New York, 1976.
  • [26] J. Stillwell, Mathematics and Its History, Springer, Berlin, 1999.
  • [27] M. E. Taylor, Noncommutative Harmonic Analysis, Math. Surveys Monog. 22, American Mathematical Society, Providence, 1986.
  • [28] I. M. Yaglom, A Simple non-Euclidean Geometry and its Physical Basis, Springer, New York, 1979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.