PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Relative functional entropy in convex analysis

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this work is to extend the relative entropy S(A|B) = A 1/2 log(A -1/2 BA -1/2)A 1/2 from positive operators to convex functionals. Our functional approach implies immediately, in a fast way, some simplifications and improvements for that of positive operators already discussed in the literature.
Wydawca
Rocznik
Strony
231--239
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Sciences, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia, raissouli_10@hotmail.com
Bibliografia
  • [1] M. Atteia and M. Raissouli, Self dual operator on convex functionals, geometric mean and square root of convex functionals, J. Convex Anal. 8 (2001), 223-240.
  • [2] J. P. Aubin, Analyse non lineaire et ses motivations economiques, Masson, Paris, 1983.
  • [3] H. Brezis. Analyse fonctionnelle: Theorie et applications, Masson, Paris. 1983.
  • [4] A. El Biari, R. Ellaia and M. Raissouli, Stability of geometric and harmonic functional means, J. Convex Anal. 10 (2003), no. 1, 199-210.
  • [5] J. I. Fujii, Kubo-Ando theory of convex functional means, Sci. Math. Jpn. 7 (2002), 299-311.
  • [6] J. I. Fujii, M. Fujii and Y. Seo, An extension of the Kubo-Ando theory. Solidarities, Math. Jap. 35 (1990), 387-396.
  • [7] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Jap. 34 (1989), 341-348.
  • [8] T. Futura, Simple proof of the concavity of operator entropy f(A) = -A log A, Math. Inequal. Appl. 3 (2000), no. 2, 305-306.
  • [9] T. Futura, M. Giga and M. Yanagida, Simple proof of jointly concavity of the relative operator entropy S(A|B) = A1/2 log (A-1/2 BA-1/2) A1/2, Math. Inequal. Appl. 6 (2003), no. 4, 713-714.
  • [10] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras, Proc. Japan Acad. 37(1961), 149-154.
  • [11] M. Raissouli, Logarithmic functional mean in convex analysis, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Art. 102.
  • [12] M. Raissouli and H. Bouziane, Functional logarithm in the sense of convex analysis, J. Convex Anal. 10 (2003), no. 1, 229-244.
  • [13] M. Raissouli and H. Bouziane, Functional limited development in convex analysis, Ann. Sci. Math. Quebec 29 (2005), no. 1, 97-110.
  • [14] M. Raissouli and H. Bouziane, Arithmetico-geometrico-harmonic functional mean in the sense of convex analysis, Ann. Sci. Math. Quebec 3 (2006), no. 1, 79-107.
  • [15] M. Raissouli and M. Chergui, Arithmetico-geometric and geometrico-harmonic means of two convex functionals, Sci. Math. Jpn. 55 (2002), no. 3,485-492.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.