Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study bounded positive definite double sequences which are stationary with respect to a polynomial hypergroup structure generated by (Rn(t)) ∈nNo. Connected with bounded positive definite and Rn-stationary double sequences is an Rn-stationary sequence of elements in a Hilbert space. We derive an ergodic theorem for such Rn-stationary sequences and we give a complete characterization of the space of multipliers defined by such an Rn-stationary sequence. Further we give examples of bounded positive definite double sequences.
Wydawca
Czasopismo
Rocznik
Tom
Strony
207--230
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Helmholtz National Research Center for Environment and Health, Institute of Biomathematics and Biometry, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany, lasser@helmholtz-muenchen. de
Bibliografia
- [1] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, Berlin, 1984.
- [2] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hyper-groups, de Gruyter, Berlin, 1995.
- [3] K. Ey and R. Lasser, Facing linear difference equations through hypergroup methods, J. Difference Equ. Appl. 13 (2007), 953-965.
- [4] K. Fan, On positive definite sequences, Ann. of Math. (2) 47 (1946), 593-607.
- [5] F. Ghahramani and A. R. Medgalchi, Compact multipliers on weighted hypergroup algebras. Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500.
- [6] F. Ghahramani and A. R. Medgalchi, Compact multipliers on weighted hypergroup algebras II, Math. Proc. Cambridge Philos. Soc. 100 (1986), 145-149.
- [7] H. Heyer, Positive and negative definite functions on a hypergroup and its dual, in: Infinite Dimensional Harmonic Analysis IV (Proceedings of the Fourth German-Japanese Symposium), World Scientific, Singapore (2009), 63-96.
- [8] V. Hosel and R. Lasser, Prediction of weakly stationary sequences on polynomial hypergroups, Ann. Probab. 31 (2003), 93-114.
- [9] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101.
- [10] R. Lasser, Orthogonal polynomials and hypergroups. Rend. Mat. Appl. (7) 3 (1983), 185-209.
- [11] R. Lasser, Orthogonal polynomials and hypergroups II - The symmetric case. Trans. Amer. Math. Soc. 341 (1994), 749-770.
- [12] R. Lasser and M. Leitner, Stochastic processes indexed by hypergroups I, J. Theoret. Probab. 2(1989), 301-311.
- [13] L. Pavel, Multipliers for the Lp-spaces of a hypergroup, Rocky Mountain J. Math. 37 (2007), 987-1000.
- [14] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.
- [15] Z. Sasvari, Positive Definite and Definitizable Functions, Akademie Verlag, Berlin, 1994.
- [16] G. Szego, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1975.
- [17] M. Voit, On the dual space of a commutative hypergroup. Arch. Math. 56 (1991), 380-385.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0023