PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On positive definite and stationary sequences with respect to polynomial hypergroups

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study bounded positive definite double sequences which are stationary with respect to a polynomial hypergroup structure generated by (Rn(t)) ∈nNo. Connected with bounded positive definite and Rn-stationary double sequences is an Rn-stationary sequence of elements in a Hilbert space. We derive an ergodic theorem for such Rn-stationary sequences and we give a complete characterization of the space of multipliers defined by such an Rn-stationary sequence. Further we give examples of bounded positive definite double sequences.
Wydawca
Rocznik
Strony
207--230
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Helmholtz National Research Center for Environment and Health, Institute of Biomathematics and Biometry, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany, lasser@helmholtz-muenchen. de
Bibliografia
  • [1] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, Berlin, 1984.
  • [2] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hyper-groups, de Gruyter, Berlin, 1995.
  • [3] K. Ey and R. Lasser, Facing linear difference equations through hypergroup methods, J. Difference Equ. Appl. 13 (2007), 953-965.
  • [4] K. Fan, On positive definite sequences, Ann. of Math. (2) 47 (1946), 593-607.
  • [5] F. Ghahramani and A. R. Medgalchi, Compact multipliers on weighted hypergroup algebras. Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500.
  • [6] F. Ghahramani and A. R. Medgalchi, Compact multipliers on weighted hypergroup algebras II, Math. Proc. Cambridge Philos. Soc. 100 (1986), 145-149.
  • [7] H. Heyer, Positive and negative definite functions on a hypergroup and its dual, in: Infinite Dimensional Harmonic Analysis IV (Proceedings of the Fourth German-Japanese Symposium), World Scientific, Singapore (2009), 63-96.
  • [8] V. Hosel and R. Lasser, Prediction of weakly stationary sequences on polynomial hypergroups, Ann. Probab. 31 (2003), 93-114.
  • [9] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101.
  • [10] R. Lasser, Orthogonal polynomials and hypergroups. Rend. Mat. Appl. (7) 3 (1983), 185-209.
  • [11] R. Lasser, Orthogonal polynomials and hypergroups II - The symmetric case. Trans. Amer. Math. Soc. 341 (1994), 749-770.
  • [12] R. Lasser and M. Leitner, Stochastic processes indexed by hypergroups I, J. Theoret. Probab. 2(1989), 301-311.
  • [13] L. Pavel, Multipliers for the Lp-spaces of a hypergroup, Rocky Mountain J. Math. 37 (2007), 987-1000.
  • [14] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.
  • [15] Z. Sasvari, Positive Definite and Definitizable Functions, Akademie Verlag, Berlin, 1994.
  • [16] G. Szego, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1975.
  • [17] M. Voit, On the dual space of a commutative hypergroup. Arch. Math. 56 (1991), 380-385.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.