PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Duals of homogeneous weighted sequence Besov spaces and applications

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we study the duals of homogeneous weighted sequence Besov spaces b α,q p,w, where the weight w is non-negative and locally integrable. In particular, when 0 < p < 1, we find a type of new sequence spaces which characterize the duals of b α,q p,w. Also, we find the necessary and sufficient conditions for the boundedness of diagonal matrices acting on homogeneous weighted sequence Besov spaces. Using these results, we give some applications to characterize the boundedness of Fourier-Haar multipliers and paraproduct operators. In this situation, we need to require that the weight w is an Ap weight.
Wydawca
Rocznik
Strony
181--205
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
Bibliografia
  • [1] M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250 (2005), 539-571.
  • [2] M. Bownik, Duality and interpolation of anisotropic Triebel-Lizorkin spaces, Math. Z. 259 (2008), 131-169.
  • [3] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Fund. Anal. 93 (1990), 34-170.
  • [4] M. Frazier and S. Roudenko, Matrix-weighted Besov space and conditions of Ap type for 0 < p <_ 1, Indiana Univ. Math. J. 53 (2004), 1225-1254.
  • [5] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland Publishing Co., Amsterdam, 1985.
  • [6] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
  • [7] N. H. Katz and M. C. Pereyra, Haar multipliers, paraproducts, and weighted inequalities, in: Analysis of Divergence (Orono, ME, 1997), Applied and Numerical Harmonic Analysis, Birkhauser Boston, Boston, MA, (1999), 145-170.
  • [8] P. Lemarie and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoam. 2 (1986), 1-18.
  • [9] C.-C. Lin and K. Wang, Triebel-Lizorkin spaces of para-accretive type and a Tb theorem, J. Geom. Anal. 19 (2009), 667-694.
  • [10] C.-C. Lin and K. Wang, The T1 theorem for Besov spaces, preprint.
  • [11] M. Meyer, Une classe d'espaces fonctionnels de type BMO. Application aux integrates singulieres. Ark. Mat. 27 (1989), 305-318.
  • [12] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics 37, Cambridge University Press, Cambridge, 1993.
  • [13] F. Nazarov and S. Treil, The hunt for a Bellman function: Applications to estimates for singular integral operators and to other classical problems of harmonic analysis (in Russian), Algebra I Analiz 8 (1996), 32-162; translation in St. Petersburg Math. J. 8(1997), 721-824.
  • [14] F. Nazarov, S. Treil and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909-928.
  • [15] S. Roudenko, Matrix-weighted Besov spaces. Trans. Amer. Math. Soc. 355 (2002), 273-314.
  • [16] S. Roudenko, Duality of matrix-weighted Besov spaces, Studia Math. 160 (2004), 129-156.
  • [17] H. Triebel, Theory of Function Spaces, Monographs in Mathematics 78, Birkhauser-Verlag, Basel, 1983.
  • [18] I. Verbitsky, Imbedding and multiplier theorems for discrete Littlewood-Paley spaces. Pacific J. Math. 176 (1996), 529-556.
  • [19] A. Volberg, Matrix Ap weights via 5-functions, J. Amer. Math. Soc, 10 (1997), 445-466.
  • [20] K. Wang, The generalization of paraproducts and the full T1 theorem for Sobolev and Triebel-Lizorkin spaces, J. Math. Anal. Appl. 209 (1997), 317-340.
  • [21] K. Wang, The full T1 theorem for certain Triebel-Lizorkin spaces, Math. Nachr. 197 (1999), 103-133.
  • [22] A. Youssfi, Regularity properties of commutators and BMO-Triebel-Lizorkin spaces, Ann. Inst. Fourier (Grenoble) 45 (1995), 795-807.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.