Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let f : B →C denote a Sobolev function of class W1p defined on the unit disc. We show that the distance of f to the class of all holomorphic functions measured in the norm of the space W1p(B;C) is bounded by the Lp-norm of theWirtinger derivative ∂-zf. As a consequence we obtain a Korn type inequality for vector fields B →R2.
Wydawca
Czasopismo
Rocznik
Tom
Strony
131--135
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- FR Mathematik, Universitat des Saarlandes, Postfach 15 11 50, 66041 Saarbrucken, Germany, fuchs@math.uni-sb.de
Bibliografia
- [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
- [2] G. Anzellotti and M. Giaquinta, Existence of the displacement field for an elasto-plastic body subject to Hencky's law and von Mises yield condition, Manuscripta Math. 32(1980), 101-136.
- [3] S. C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Studies in Advanced Mathematics 19, American Mathematical Society, Providence, RI, International Press, Sommerville, MA, 2001.
- [4] S. Dain, Generalized Korn's inequality and conformal Killing vectors, Calc. War. Partial Differential Equations 25 (2006), no. 4, 535-540.
- [5] L. Fontana, S. Krantz and M. M. Peloso, The 3-Neumann problem in the Sobolev topology, Indiana Univ. Math. J. 48 (1999), no. 1, 275-293.
- [6] M. Fuchs and O. Schirra, An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers. Arch. Math. 93 (2009), 587-596.
- [7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 1998.
- [8] L. Hormander, An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, North-Holland, Amsterdam, 1973.
- [9] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
- [10] F. Sauvigny, Partielle Differentialgleichungen der Geometrie und der Physik. Grundlagen und Integraldarstellungen, Springer-Lehrbuch Masterclass, Springer-Verlag, Berlin, Heidelberg, New York, 2003.
- [11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
- [12] P. Suquet, Existence et regularity des solutions des equations de la plasticite parfaite, These de 3eme Cycle, Universite de Paris VI, Paris, 1978; C. R. Acad. Sci. Paris, Ser. D. 286 (1978), 1201-1204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0018