Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, a new class of set-valued variational-like inclusions involving H - η-accretive operators is introduced and studied. A new iterative procedure for computing approximate solutions for the class of set-valued variational-like inclusions and convergence results are established.
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--117
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India, raisain_123@rediffmail.com
Bibliografia
- [1] R. P. Agarwal, Y. J. Cho and N. J. Huang, Stability of iterative procedures with error approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002), 435-447.
- [2] S. S. Chang, Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 248 (2000), 438-454.
- [3] S. S. Chang, Y. J. Cho, B. S. Lee and J. H. Jung, Generalized set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 246 (2000), 409-422.
- [4] S. S. Chang, J. K. Jim and K. M. Kim, On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 268 (2002), 89-108.
- [5] Y P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647-653.
- [6] N. J. Huang, Nonlinear implicit quasi-variational inclusions involving generalized m-accretive mappings. Arch. Inequal. Appl. 2 (2004), 413-426.
- [7] N. J. Huang and Y P. Fang, Generalized m-accretive operators in Banach spaces, J. Sichaun Univ. 38 (2001), 591-592.
- [8] N. J. Huang, Y P. Fang and Y J. Cho, Generalized w-accretive mappings and variational inclusions in Banach spaces, J. Concrete Appl. Math. 3 (2005) 31-40.
- [9] N. J. Huang, Y P. Fang and C. X. Deng, A new class of generalized nonlinear variational inclusions in Banach spaces, in: Proceedings of the International Conference on Mathematical Programming, Shanghai University, December 19-22, 2002, pp. 207-214, Shanghai University Press, Shanghai, 2004.
- [10] M. M. Jin, Iterative algorithms for a new system of nonlinear variational inclusions with (A, eta)-accerative mappings in Banach spaces, Comput. Math. Appl. 54 (2007), no. 4, 570-588.
- [11] M. M. Jin and Q. K. Liu, Nonlinear quasi-variational inclusions involving generalized m-accretive mappings, Nonlinear Fund. Anal. Appl. 9 (2004), no. 3, 485-494.
- [12] K. R. Kazmi and F. A. Khan, Iterative approximation of a solution of multi-valued variational-like inclusion in Banach spaces: A P - eta-proximal point mapping approach, J. Math. Anal. Appl. 325 (2007), no. 1, 665-674.
- [13] S. B. Nadler, Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475-488.
- [14] C. Shi and S. Liu, Generalized set-valued variational inclusions in g-uniformly Banach spaces, J. Math. Anal. Appl. 296 (2004), 553-562.
- [15] Z. B. Xu and G. F. Roach, Characterstic inequalities uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), 189-210.
- [16] Q.-B. Zhang, X.-P. Ding and C.-Z. Cheng, Resolvent operator technique for generalized implicit variational-like inclusion in Banach space, J. Math. Anal. Appl. 361 (2010), 283-292.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0016