Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we derive some identities of harmonic number sums with binomial coefficients, we also give integral representations for the sums. We recover some existing identities and introduce a number of new ones.
Wydawca
Czasopismo
Rocznik
Tom
Strony
265--277
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, VIC 8001, Australia, anthony.sofo@vu.edu.au
Bibliografia
- [1] G. Almkvist, C. Krattenthaler, and J. Petersson. Some new formulas for n. Experiment. Math. 12 (2003), 441-456.
- [2] H. Alzer and S. Koumandos. Series representations for y and other mathematical constants. Analysis Mathematica 34 (2008), 1-8.
- [3] H. Alzer, D. Karayannakis and H. M. Srivastava, Series representations of some mathematical constants, J. Math. Anal. Appl. 320 (2006), 145-162.
- [4] W. Chu, and D. Zheng. Infinite series with harmonic numbers and central binomial coefficients. Int. J. Num. Theory 5 (2009), 429-448.
- [5] G. Dattoli, and H.M Srivastava. A note on harmonic numbers, umbral calculus and generating functions. Appl. Math. Letters 21 (2008), 686-693.
- [6] C. Krattenthaler, and K. S. Rao. Automatic generation of hypergeometric identities by the beta integral method. J. Comput. Math. Appl. 160 (2003), 159-173.
- [7] http://mathworld.wolfram.com/Polylogarithm.html.
- [8] J. Sandor. Remark on a function which generalizes the harmonic series. C. R. Bulg. Acad. Sci. 41(5) (1988), 19-21.
- [9] A. Sofo. Integral forms of sums associated with Harmonic numbers, Appl. Math. Comput. 207 (2009), 365-372.
- [10] A. Sofo. Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003.
- [11] A. Sofo. Some more identities involving rational sums, Appl. Anal. Disc. Maths. 2 (2008), 56-66.
- [12] A. Sofo. Harmonic numbers and double binomial coefficients. Integral Transforms and Spec. Fund. 20(11) (2009), 847-857.
- [13] J. Sondow, and E. W. Weisstein. Harmonic number. From MathWorld-A Wolfram Web Rescources. http: //mathworld.wolfram.com/HarmonicNumber.html.
- [14] R. Srivastava. Some combinatorial series identities and rational sums. Integral Transforms and Spec. Fund. 20(2) (2009), 83-91.
- [15] Wolfram Research Inc., Mathematica, Wolfram Research Inc., Champaign, IL.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0033-0007