PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inverse heat transfer problems in electronics

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This dissertation discusses selected topics related to the thermal modelling of electronic systems. After a short introduction, the author presents in the first chapter the mathematical model describing the heat transfer processes occurring in such systems and formulates the heat equation determining the temperature distribution in a structure. Then, different methods of solving the equation, both numerical and analytical ones, are discussed. Particular attention is paid to the analytical method based on the Green's function approach, in which a solution is found for three-dimensional, non-homogenous, multi-layered structures. This solution method constitutes the original contribution of the author. A separate section of this chapter is devoted to the compact thermal modelling of electronic systems. There, except for the presentation of the standard methodology leading to the creation of boundary condition independent models, the author proposes its own approach based on the network identification by deconvolution method, producing thermal models in the form of the Cauer RC ladder network. The remaining three chapters are devoted to the description of the inverse heat transfer problems. First, these problems and their existing solution methods are briefly characterised. The following chapter presents an overview of various model parameter estimation techniques. In particular, the problem of estimating the temperature dependence of the heat transfer coefficient value is discussed. The estimation is performed by the coupling of a direct analytical thermal solver with an inverse derivative-free algorithm. The final chapter of this dissertation discusses various function estimation techniques. In particular, it illustrates the inverse problem consisting in real time estimation of power dissipated in heat sources based on remote temperature measurements. First, the author discusses in detail the problem of the optimal choice of sensor locations for a given heat source configuration. Finally, an original digital filter implementation of the sequential function specification method is proposed. This filter was used for the estimation of dissipated power in a real integrated circuit.
PL
Niniejsza rozprawa omawia wybrane zagadnienia dotyczące modelowania termicznego systemów elektronicznych. Po krótkim wstępie, autor przedstawia w pierwszym rozdziale model matematyczny opisujący procesy wymiany ciepła zachodzące w ciałach stałych formułując jednocześnie równanie różniczkowe cząstkowe przewodnictwa cieplnego opisujące pole temperatury. Kolejno autor dokonuje krótkiego przeglądu dostępnych metod numerycznych i analitycznych rozwiązywania tego równania. Szczególną uwagę autor poświęca analitycznej metodzie wykorzystującej funkcje Greena podając rozwiązanie równania dla trójwymiarowej, niejednorodnej struktury warstwowej. Rozwiązanie to stanowi oryginalny, własny wkład autora. Oddzielny podrozdział pracy poświęcony jest tzw. kompaktowym modelom termicznym systemów elektronicznych. Oprócz standardowej metodologii tworzenia niezależnych od warunków brzegowych modeli termicznych, omówiono w nim zaproponowaną przez autora technikę tworzenia kompaktowych modeli termicznych opartą na metodzie identyfikacji systemu poprzez rozplot jego odpowiedzi termicznej na wymuszenie skokiem jednostkowym. Zaproponowana metoda pozwala na otrzymanie kompaktowych modeli termicznych w postaci drabinek RC o niewielkiej liczbie elementów. Kolejne trzy rozdziały monografii poświęcone są odwrotnym problemom cieplnym. Pierwszy z nich przedstawia zwięzłą charakterystykę tego typu problemów oraz omawia stosowane obecnie metody ich rozwiązywania. Następny rozdział zawiera krótki przegląd metod estymacji parametrów modeli. W szczególności autor zajmuje się problemem szacowania lokalnej wartości współczynnika wymiany ciepła w zależności od temperatury powierzchni. Autor wykorzystuje do tego celu bezgradientowy algorytm do rozwiązywania problemów odwrotnych sprzężony z symulatorem termicznych. Ostatni rozdział prezentuje różnego rodzaju algorytmy odwrotne służące do estymacji funkcji. W szczególności autor zajmuje się szacowaniem w czasie rzeczywistym mocy rozpraszanej w źródłach ciepła na podstawie pomiarów z odległych czujników temperatury. Autor omawia problematykę optymalnego, dla danej konfiguracji źródeł ciepła, wyboru położenia czujników. Na zakończenie przedstawia własną zmodyfikowaną wersję sekwencyjnego algorytmu współczynników wrażliwości zaimplementowanego w postaci filtru cyfrowego, który to został wykorzystany do szacowania mocy w rzeczywistym układzie scalonym.
Rocznik
Tom
Strony
1--158
Opis fizyczny
Bibliogr. 240 poz.
Twórcy
autor
  • Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej
Bibliografia
  • Publications with author's contribution
  • [A-1] Janicki M., Zubert M., Wójciak W., Orlikowski M., and Napieralski A.: Estimation of IC temperature solving inverse problem. In Proc. 4th Intl. Workshop MIXDES, Poznań, Poland, 12-14 June 1997, pp. 253-257.
  • [A-2] Janicki M., Zubert M., Napieralski A.: Application of inverse heat conduction problem solution with error correction to estimation of IC temperature. In Proc. 3rd Intl. Workshop THERMINIC, 21-23 September 1997, Cannes, France, pp. 17-22.
  • [A-3] Napieralski A., Furmańczyk M., Pacholik J., Jabłoński G., Wójciak W., Napieralska M., Grecki M., Ciota Z., Ati A.A., Janicki M., Orlikowski M., Zubert M.: The Tulsoft approach. In book: "Basic Research for Microsystems Integration," CEPADUES-EDITIONS, Toulouse, France, 1997, pp. 124-136.
  • [A-4] Janicki M., Zubert M., Wójciak W., Orlikowski M., and Napieralski A.: Application of inverse problems to IC temperature estimation. In book "Mixed Design of Integrated Circuits and Systems," Kluwer AP, 1998, pp. 55-60.
  • [A-5] Janicki M., Soraghan J., and Napieralski A.: Strategy for optimisation of heat sources and temperature sensors position in integrated circuits. In Proc. 5th Intl. Conference MIXDES, Lodz, Poland, 18-20 June 1998, pp. 209-212.
  • [A-6] Janicki M., Soraghan J., Napieralski A., Zubert M.: Application of adaptive filters to integrated circuit temperature estimation from noisy temperature sensor measurements. In Proc. 5th Intl. Conference MIXDES, Łódź, Poland, 18-20 June 1998, pp. 183-188.
  • [A-7] Janicki M., Zubert M., Napieralski A.: Application of inverse heat conduction methods in temperature monitoring of integrated circuits. Sensors and Actuators: A Physical, vol. 71, pp. 51-57, 1998.
  • [A-8] Janicki M., and Napieralski A.: 3D thermal simulation of hybrid circuits based on analytical solution of heat conduction equation. In Proc. of 5th Intl. Conference CADSM, Slavsko, Ukraine, 1-6 February 1999, pp. 11-12.
  • [A-9] Janicki M., Napieralski A., Fedasyuk D., Petrov D.: Comparison of the thermal simulation results for the hybrid circuit test structure. In Proc. 6th Intl. Conference MIXDES, Kraków, Poland, 17-19 June 1999, pp. 301-303.
  • [A-10] Janicki M., Napieralski A.: Considerations on accuracy of analytical thermal models of electronic circuits. In Proc. 6th Intl. Conference MIXDES, Kraków, Poland, 17-19 June 1999, pp. 305-308.
  • [A-11] Wojciak W., Napieralski A., Zubert M., and Janicki M.: Thermal monitoring in integrated power electronics - new concept. In Proc. 7th European Conference EPE, September 8-10, 1997, Trondheim, Norway, vol. 3, pp. 269-271.
  • [A-12] Janicki M., Napieralski A.: Integrated circuit temperature estimation using QR-RLS adaptive Algorithm. In Proc. 3rd Intl. Conference ECS, Bratislava, Slovakia, 6-8 September 1999, pp. 73-76.
  • [A-13] Janicki M.: Thermal modelling of semiconductor structures with special consideration of inverse problem methods for parameter estimation. PhD Thesis, Politechnika Łódzka, Łódź, 1999.
  • [A-14] Janicki M., Zubert M., and Napieralski A.: Application of inverse problem algorithms for integrated circuit temperature estimation. Microelectronics Journal, vol. 30, November 1999, pp. 1099-1107.
  • [A-15] Janicki M., Napieralski A.: Temperature monitoring of electronic circuits based on analytical thermal model. In Proc. of 22nd Intl. Conf. MIEL, Nis, Yugoslavia, 14-17 May 2000, pp. 581-584.
  • [A-16] Janicki M., Napieralski A., Fedasyuk D., and Petrov D.: Thermal modelling of hybrid circuits: simulation method comparison. Microelectronics Reliability, vol. 40, 2000, pp. 541-546.
  • [A-17] Janicki M., Kawka P., De Mey G., and Napieralski A.: IGBT hybrid module thermal measurements and simulations. In Proc. of 8th Intl. Conference MIXDES, Zakopane, Poland, 21-23 June 2001, pp. 249-252.
  • [A-18] Janicki M., Kawka P., Leon O., De Mey G., and Napieralski A.: Investigation of circuit forced convection air cooling in low speed wind tunnel. In Proc. 7th Intl. Workshop THERMINIC, 24-27 September 2001, Paris, France, pp. 79-82.
  • [A-19] Janicki M., and Napieralski A.: Inverse heat conduction problems in electronic circuits. In Proc. of 9th Intl. Conf. MIXDES, 20-22 June 2002, Wrocław, Poland, pp. 385-388.
  • [A-20] Janicki M., Napieralski A.: Analytical transient solution of heat equation with variable heat transfer coefficient. In Proc. of 8th Intl. Workshop THERMINIC, 1-4 October 2002, Madrid, Spain, pp. 235-240.
  • [A-21] Janicki M., De Mey G., Napieralski A.: Application of Green's functions for analysis of transient thermal states in electronic circuits. Microelectronics Journal, Vol. 33, 2002, pp. 733-738.
  • [A-22] Janicki M., De Mey G., Napieralski A.: Transient thermal analysis of multi-layered structures using Green's functions. Microelectronics Reliability, vol. 42 2002, pp. 1059-1064.
  • [A-23] Janicki M., Napieralski A.: Transient thermal simulations of power integrated circuits using analytical solution of the heat equation. In Proc. of 10th European Conference EPE, 2-4 Sept. 2003, Toulouse, France, DS3.3-142.
  • [A-24] Janicki M., Daniel M., Szermer M., and Napieralski A.: Ion sensitive field effect transistor modelling for multidomain simulation purposes. Microelectronics Journal, vol. 35, 2004, pp. 831-840.
  • [A-25] Daniel M., Janicki M., Wroblewski W., Dybko A., Brzozka Z., Napieralski: Ion selective transistor modelling for behavioural simulations. Water Science and Technology, vol. 50, 2004, pp. 115-123.
  • [A-26] Janicki M., De Mey G., Napieralski A.: Transient thermal simulation of a power hybrid module using an analytical solution of the heat equation. In Proc. 11th Intl. Workshop THERMINIC, 27-30 September 2005, Belgirate, Lake Maggiore, Italy, pp. 11-16.
  • [A-27] Janicki M., Napieralski A.: Parametric thermal analyses of electronic circuits with Green's functions'. In Proc. of 13th Intl. Conference MIXDES, 22-24 June 2006, Gdynia, Poland, pp. 437-440.
  • [A-28] Banaszczyk J., De Mey G., Janicki M., Napieralski A., Vermeersch B., and Kawka P.: Dynamic thermal analysis of a power amplifier. In Proc. of 12th Intl. Workshop THERMINIC, 27-29 September 2006, Nice, France, pp. 128-132.
  • [A-29] Janicki M., De Mey G., Napieralski A.: Thermal analysis of layered electronic circuits with Green's functions. Microelectronics Journal, vol. 38, February 2007, pp. 177-184.
  • [A-30] Kaminski M., Janicki M., and Napieralski A.: Application of RC equivalent networks to modelling of nonlinear thermal phenomena. In Proc. of 14th Intl. Conference MIXDES, 21-23 June 2007, Ciechocinek, Poland, pp. 357-362.
  • [A-31] Banaszczyk J., Janicki M., Vermeersch B., De Mey G., and Napieralski A.: Application of advanced thermal analysis method for investigation of internal package structure. In Proc. of 14th Intl. Conference MIXDES, 21-23 June 2007, Ciechocinek, Poland, pp. 553-558.
  • [A-32] Janicki M., Banaszczyk J., De Mey G., Kaminski M., Vermeersch B., Napieralski A.: Application of structure functions for investigation of forced air cooling. In Proc. of 13th Intl. Workshop THERMINIC, 17-19 September 2007, Budapest, Hungary, pp. 2-5.
  • [A-33] Kamiński M., Janicki M., Napieralski A. Modelowanie nieliniowych zjawisk termicznych w układach elektronicznych z wykorzystaniem programu SPICE (Modelling of nonlinear thermal phenomena in electronic circuits with SPICE). Elektronika, Nr. 10, 2007, pp.7-12.
  • [A-34] Janicki M., Pietrzak P., Vermeersch B., Banaszczyk J., Kaminski M., De Mey G., and Napieralski A.: Determining thermal simulation data from transient measurements. In Proc. 24th IEEE SEMI-THERM, March 16-20, 2008, San Jose, USA, pp. 200-204.
  • [A-35] Janicki M., Napieralski A.: Real time temperature estimation of heat sources in integrated circuits with remote temperature sensors. Journal of Physics: Conf. Series, vol. 124, 2008, 012027, 11 pages.
  • [A-36] Szermer M., Kulesza Z., Janicki M., Napieralski A.: Test ASIC for real time estimation of chip temperature. In Proc. of NSTI Nanotech 1-5 June, 2008 Boston, MA, USA, vol. 3, pp. 529-532.
  • [A-37] Szermer M., Kulesza Z., Janicki M., Napieralski A.: Design of the test ASIC for on-line temperature monitoring and thermal structure analysis. In Proc. of 15th Intl. Conference MIXDES, 19-21 June 2008, Poznan, Poland, pp. 317-320.
  • [A-38] Janicki M., Kindermann S., Napieralski A.: Investigation of circuit thermal models based on the transient thermal response spectra. In Proc. of 15th Intl. Conf. MIXDES, 19-21 June 2008, Poznan, Poland, pp. 337-342.
  • [A-39] Janicki M., Banaszczyk J., De Mey G., Kaminski M., Vermeersch B., and Napieralski A.: Assessment of die attach quality by analysis of circuit thermal response spectrum. In Proc. 14th Intl. Workshop THERMINIC, 24-26 September 2008, Rome, Italy, pp. 43-46.
  • [A-40] Janicki M., Kindermann S., Pietrzak P., Napieralski A.: Estimation of local temperature dependent heat transfer coefficient for thermal analysis of electronic circuits, Journal of Physics: Conf. Series, vol. 135, 2008, 012053, 8 pages.
  • [A-41] Janicki M., Szermer M., Pietrzak P., Napieralski A.: Real time temperature monitoring of ICs with boundary temperature scan. In Proc. 25th IEEE SEMI-THERM, March 15-19, 2009, San Jose, USA, pp. 146-150.
  • [A-42] Janicki M., Kulesza Z., Szermer M., and Napieralski A.: Digital filter implementation of function specification inverse algorithm. In Proc. of 16th Intl. Conference MIXDES, 25-27 June 2009, Lodz, Poland, pp. 347-350.
  • [A-43] Janicki M., Szermer M., Klab S., Kulesza Z., Napieralski A.: Practical study of temperature distribution in a thermal test integrated circuit. In Proc. 15th Intl. Workshop THERMINIC, 7-9 October 2009, Leuven, Belgium, pp. 136-139.
  • [A-44] Janicki M., Banaszczyk J., De Mey G., Kaminski M., Vermeersch B., Napieralski A.: Dynamic thermal modelling of a power integrated circuit with the application of structure functions. Microelectronics Journal, vol. 40, 2009, pp. 1135-1149.
  • [A-45] Kindermann S., and Janicki M.: The heat transform and its use in thermal identification problems for electronic circuits. Electronic Transactions Numerical Analysis, vol. 35, 2009, pp. 164-184.
  • [A-46] Janicki M., and Kindermann S.: Recovering temperature dependence of heat transfer coefficient in electronic circuits. Inverse Problems Science Engineering, vol. 17, 2009, pp. 1129-1142.
  • [A-47] Janicki M., Collet J., Louri A., Napieralski A.: Hot spots and core-to-core thermal coupling in future multicore architectures. In Proc. 26th IEEE SEMI-THERM, February 21-25, 2010, Santa Clara, USA, pp. 205-210.
  • [A-48] Szermer M., Janicki M., Pietrzak P., Kulesza Z., Napieralski A.: PTAT sensor for chip overheat protection. In Proc. 26th IEEE SEMI-THERM, February 21-25, 2010, Santa Clara, USA, pp. 176-179.
  • [A-49] Janicki M., Kulesza Z., Pietrzak P., and Napieralski A.: Multichannel system for real time registration of electronic circuit temperature response. In Proc. of 17th Intl. Conference MIXDES, 24-26 June 2010, Wroclaw, Poland, pp. 357-360.
  • [A-50] Janicki M., Kulesza Z., Napieralski A.: Distributed network of remote sensors for real time prediction of hot spot temperature values. In Proc. of 9th Conference IEEE Sensors, November 1-4, 2010, pp. 656-659.
  • [A-51] Janicki M., Kulesza Z., Pietrzak P., and Napieralski A.: Multichannel readout system for registration of electronic system temperature response with high temporal resolution. International Journal Microelectronics & Computer Science, vol. 1, 2010, pp. 305-310.
  • [A-52] Janicki M., Kulesza Z., Torzewicz T., and Napieralski A.: Automated stand for thermal characterization of electronic package. In Proc. 27th IEEE SEMI-THERM, March 21-24, 2011, San Jose, USA.
  • [A-53] Janicki M., Zubert M., Napieralski A.: Generation of reduced thermal models of electronic systems from transient thermal response. Proc. 12th Intl. Conference EuroSimE, 18-20 April 2011, Linz, Austria, DOI: 10.1109/ESIME.2011.5765808.
  • [A-54] Janicki J., Kulesza Z., Napieralski A.: Accelerated detection of rapid heat flux changes in real time remote prediction of heat source temperature. In Proc. 7th Intl. Conference ICIPE, Orlando, USA, 4-6 May 2011, pp. 126-131.
  • [A-55] Janicki M., Banaszczyk J., Vermeersch B., De Mey G., and Napieralski A.: Generation of reduced thermal models of electronic systems from time constant spectra of transient temperature responses. Microelectronics Reliability, vol. 51, 2011, pp. 1351-1355.
  • [A-56] Janicki M., Kulesza Z., Torzewicz T., Napieralski A.: Active control of circuit cooling conditions for transient thermal measurement purposes. In Proc. 17th Intl. Workshop THERMINIC, 27-29 September 2011, Paris, France, pp. 215-218.
  • Other publications
  • [1] Ali Y.M., Zhang L.C.: Relativistic heat conduction. International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 2397-2406.
  • [2] Alifanov O.M., Artyukhin E.A., Rumyantsev S.V.: Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. Begell House, New York, 1995.
  • [3] Alifanov O.M.: Inverse Heat Transfer Problems. Springer, New York, 1994.
  • [4] Aster R.C., Borchers B., and Thurber C.H.: Parameter Estimation and Inverse Problems. Elsevier, 2005.
  • [5] Astrom K., and Hagglund T.: PID Controllers: Theory, Design, and Tuning, ISA, 1995.
  • [6] Bar-Cohen A., Elperin T., and Eliasi R.: 6jc characterization of chip packages: Justification, limitations and future. IEEE Transactions on Components Hybrids and Manufacturing Technology, vol. 12, 1989, pp. 724-731.
  • [7] Barletta A., Zanchini E.: Non-Fourier heat conduction in a plane slab with prescribed boundary heat flux. Heat and Mass Transfer, vol. 31, 1996, pp. 443-450.
  • [8] Batty W., Christoffersen C, Panks A.J., David S., Snowden CM., Steer M.B.: Electrothermal CAD of power devices and circuits with physical time-dependent compact-thermal modeling of complex nonlinear 3-D systems. IEEE Transactions on Components and Packaging Technologies, vol. 24, 2001, pp. 566-590.
  • [9] Bayazitoglu Y., Ozisik M.N.: Elements of heat transfer. McGraw-Hill, 1988.
  • [10] Beck J.V.: Calculation of surface heat flux from an integral temperature history. ASME Journal of Heat Transfer, 62-HT-46, 1962.
  • [11] Beck J.V., Blackwell B., St. Clair C.R. Jr.: Inverse Heat Conduction - Ill-posed Problems. John Wiley & Sons, 1985.
  • [12] Beck J.V., Cole K.D., Haji-Sheikh A., Litkouhi B.: Heat conduction using Green's functions. Hemisphere Publishing, 1992.
  • [13] Beck J.V., Blackwell B., Haji-Sheikh A.: Comparison of inverse heat conduction methods using experimental data. International Journal of Heat and Mass Transfer, vol.39, 1996, pp. 3649-3657.
  • [14] Benedek Z., Courtois B., Farkas G., Kollar E., Mir S., Poppe A., Rencz M., Szekely V., and Torki K.: A scalable multi-functional thermal test chip family. Transactions ASME, Journal of Electronic Packaging, vol. 123, 2001, pp 323-330.
  • [15] Brebbia C.A., Dominguez J.: Boundary element methods for potential problems. Applied Mathematical Modelling, vol. 1, 1977, pp. 372-378.
  • [16] Brebbia CA., Telles J.C.F., Wróbel L.C.: Boundary element techniques: theory and applications in engineering. Springer, 1984.
  • [17] Carslaw H.S., Jaeger J.S.: Conduction of Heat in Solids. Clarendon Press, Oxford, 1947.
  • [18] Cattaneo CR.: Sur une de l'équation de la chaleurs éliminant le paradoxe d'une propagation instantanée. Comptes Rendus, vol. 247, 1958, pp. 431-433.
  • [19] Celo D., Gunupudi P., Khazaka R., Walkey D., Smy T., and Nakhla M.: The creation of compact thermal models of electronic components with model reduction. IEEE Journal on Advanced Packaging, vol. 28, 2005, pp. 240-251.
  • [20] Cheng A. H.-D., Cheng D.T.: Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements, vol. 29, 2005, pp. 268-302.
  • [21] Chua L.O., Lin P.: Computer-aided Analysis of Electronic Circuits, Prentice-Hall, 1975.
  • [22] Chester M.: Second sound in solids. Physical Review, vol. 131, 1963, pp. 2013- 2015.
  • [23] Clough R.: The finite element method in plane stress analysis. In Proc. of 2nd ASCE Conference on Electronic Computation, Pittsburg, USA, 1960, pp. 345-378.
  • [24] Codecasa L.: Physical structure function representation of multidirectional heat flows. IEEE Transactions Components and Packaging Technologies, vol. 30, 2007, pp. 643-652.
  • [25] Colaco M.J., Orlande H.R.B.: Comparison of different versions of the conjugate gradient method of function estimation. Numerical Heat Transfer A, vol. 36, 1999, pp. 229-249.
  • [26] Cole K.D., Yen D.H.: Green's functions, temperature and heat flux in the rectangle. International Journal of Heat and Mass Transfer, vol. 44, 2001, pp. 3883-3894.
  • [27] Courant R., Friedrichs K., Lewy H.: Uber die partiellen Differenzengleichungen der Mathematischen Physik. Mathematische Annalen, vol. 100, 1928, pp. 32-74 (English translation with commentaries by Lax P., Widlund O. and Parter S. in IBM Journal of Research and Development, vol. 11, 1967, pp. 215-247).
  • [28] Crittenden P., Cole K.: Fast converging steady state heat conduction in rectangular parallelepiped. Intl. Journal Heat and Mass Transfer, vol. 45, 2002, pp. 3585-3569.
  • [29] Dahlquist G., Bjoerck A.: Numerical Methods. Prentice-Hall, 1974.
  • [30] D'Alessandro V., and Rinaldi N.: A critical review of thermal models for electro- thermal simulation. Solid-State Electronics, vol. 46, 2002, pp. 487-496.
  • [31] De Mey G., Rottiers L., Driscart M., Van Shoor L.: Thermal studies on hybrid circuits. Hybrid Circuits, vol. 17, 1988, pp. 8-11.
  • [32] Djadoenath S., Stehouwer P.: Creation and validation of compact thermal models. In Proc. 6th Workshop THERMINIC, Budapest, Hungary, 24-27 September 2000, pp. 217-222.
  • [33] Dorkel J.M., Napieralski A., Leturcq P.: Implementation of a new method for thermal analysis of plane multilayered systems. Numerical Heat Transfer, vol. 13, 1988, pp. 319-336.
  • [34] Ellison G.N.: Thermal analysis of microelectric packages and printed circuit boards using an analytic solution to heat conduction equation. Advances in Eng. Software, vol. 22, 1995, pp. 99-111.
  • [35] Emery A., Nenarokomov A.V.: Optimal experiment design. Measurement Science and Technology, vol. 9, 1998, pp. 864.
  • [36] Engl H.W,. Hanke M., Neubauer A.: Regularization of Inverse Problems. Kluwer Academic Publishers, 1996.
  • [37] Fletcher R., Reeves C.: Function minimization by conjugate gradients. Computer Journal, vol. 7, 1964, pp. 149-154.
  • [38] Forsythe G.E., Wasow W.R.: Finite-difference methods for partial differential equations. Wiley, 1960.
  • [39] Franke T., and Froehler U.: Thermal modelling of semiconductor packages. Microelectronics Journal, vol. 32, 2001, pp. 809-816.
  • [40] Frankel J.I., Vick B., Ozisik M.N.: Flux formulation of hyperbolic heat equation. Journal of Applied Physics, vol. 58, 1985, pp. 3340-3345.
  • [41] Fourier J.: The Analytical Theory of Heat. Dover Publications, New York, 1955.
  • [42] Furmanczyk M., Jablonski G., Napieralski A. Pacholik J.: The 3D transient thermal simulation with arbitrary border conditions. In Proc. of 1st THERMINIC, Grenoble, France, September 25-26, 1995, pp. 70-75.
  • [43] Furmańczyk M., Jablonski G., and Napieralski A.: Thermal simulation with the TULSOFT package in the CADENCE design framework. In Proc. of 2nd Workshop THERMINIC, September 25-27, 1996, Budapest, Hungary, pp. 35-40.
  • [44] Furmanczyk M., Napieralski A., Yu E., Przekwas A., Turowski M.: Thermal model reduction for integrated circuits In Proc. of 4th Workshop THERMINIC, September 27-29, 1998, Cannes, France, pp. 135-138.
  • [45] Gardner J.W.: Microsensors: principles and applications. Wiley & Sons, 1994.
  • [46] Gerstenmaier Y.C., Pape H., Wachutka G.: Rigorous model and network for static thermal problems. Microelectronics Journal, vol. 33, 2002, pp. 711-718.
  • [47] Gerstenmaier Y.C., Wachutka G.: Rigorous model and network for transient thermal problems. Microelectronics Journal, vol. 33, 2002, pp. 719-725.
  • [48] Gerstenmaier Y., Wachutka G.: Time dependent temperature fields calculated using eigenfunctions and eigenvalues of heat conduction equation. Microelectronics Journal, vol. 32, 2001, pp. 801-808.
  • [49] Gerstenmaier Y., Wachutka G.K.: Transient temperature fields with general nonlinear boundary conditions in electronic systems. IEEE Trans. Components and Packaging Technologies, vol. 28, 2005, pp. 23-33.
  • [50] Gerstenmaier Y., Kiffe W., Wachutka G.: Combination of thermal subsystems modeled by rapid circuit transformation. In Proc. 13th Intl. Workshop THERMINIC, 17-19 September 2007, Budapest, Hungary, pp. 115-120.
  • [51] Glass D.E., Ozisik M.N., McRae D.S., Vick B.: Hyperbolic heat conduction with temperature dependent thermal conductivity. Journal of Applied Physics, vol. 59, 1986, pp. 1861-1865.
  • [52] Golub G.H., van Loan C. F.: Matrix Computations. The John Hopkins University Press, Baltimore, USA, 1996.
  • [53] Gray L.J., Kaplan T., Richardson J.D, Paulino G.H.: Green's functions and boundary integral analysis for exponentially graded materials: heat conduction. Journal of Applied Mechanics, Vol. 70, 2003, pp. 543-549.
  • [54] Greenberg M.D.: Application of Green's functions in science and engineering. Prentice-Hall, 1971.
  • [55] Grysa K.: Ścisłe i przybliżone metody rozwiązywania zagadnień odwrotnych pól temperatury. Rozprawa Nr 204, Politechnika Poznańska, 1989 (in Polish).
  • [56] Hadamard J.: Lectures on Cauchy's Problem in Linear Differential Equations. Yale University Press, New Haven, CT, 1923.
  • [57] Haji-Sheikh A., Beck J.: Green's function partitioning in Galerkin-based integral solution of the diffusion equation. Journal of Heat Transfer, ASME, vol. 112, 1990, pp. 28-64.
  • [58] Haji-Sheikh A., Buckingham F.: Multidimensional inverse heat conduction using the Monte Carlo method. ASME Transactions, Journal of Heat Transfer, vol. 115, 1993, pp. 26-33.
  • [59] Haji-Sheikh A., Beck J.V.: An efficient method of computing eigenvalues in heat conduction. Numerical Heat Transfer, Part B, vol. 38, 2000, pp. 133-156.
  • [60] Haji-Sheikh A., Beck J.V.: Temperature solution in multi-dimensional multi-layer bodies. International Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 1865-1877.
  • [61] Haji-Sheikh A., Minkowycz W.J., Sparrow E.: Certain anomalies in the analysis of hyperbolic heat conduction. ASME Journal of Heat Transfer, vol. 124, 2002, pp. 307-319.
  • [62] Haji-Sheikh A., Beck J.V., Agonafer D.: Steady-state heat conduction in multi- layer bodies. International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 2263-2379.
  • [63] Hanke M., Neubauer A., Scherzer O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numerische Mathematik, Vol. 72, 1995, pp. 21-37.
  • [64] Hansen P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 1998.
  • [65] Haykin S.: Adaptive filter theory. Prentice-Hall Int., New Jersey, USA, 1996.
  • [66] Hensel E.: Inverse Theory and Applications for Engineers. Prentice Hall, 1991.
  • [67] Hering M.: Termokinetyka dla elektryków, WNT, Warszawa, 1980 (in Polish).
  • [68] Holman J.P.: Heat transfer, McGraw-Hill, 1998.
  • [69] Hsu P.T., Chu Y.H.: An inverse non-Fourier heat conduction problem approach for estimating the boundary condition in electronic device. Applied Mathematical Modelling, vol. 28, 2004, pp. 639-652.
  • [70] Ifeachor E.C., Jervis B.W.: Digital signal processing. Addison-Wesley Publishing, 1996.
  • [71] Ilegbusi O.J., Coskun A.U., Yener Y.: Application of spectral methods to thermal analysis of nanoscale electronic devices. Numerical Heat Transfer: A, vol. 41, 2002, pp. 711-724.
  • [72] Incropera F.P., DeWitt D.P.: Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 2002.
  • [73] Kakac S., Yener Y.: Heat conduction. Taylor and Francis, 1993.
  • [74] Kalman R.E.: A new approach to linear filtering and prediction problems. ASME Journal on Basic Engineering, vol. 82D, 1960, pp. 35-45.
  • [75] Kaltenbacher B., Neubauer A., Scherzer O.: Iterative Regularization Methods For Nonlinear Ill-Posed Problems, Walter de Gruyter, 2008.
  • [76] Kamiński M., Napieralski A.: Solving non-linear equation of thermal conduction. Proc. 11th Intl. Conf. MIXDES, 24-26 June 2004, Szczecin, Poland, pp. 302-307.
  • [77] Kawka P., De Mey G., Vermeersch B.: Thermal characterization of electronic packages using the Nyquist plot of thermal impedance. IEEE Trans. on Components and Packaging Technologies, vol. 30, 2007, pp. 660-665.
  • [78] Kącki E.: Równania różniczkowe cząstkowe w zagadnieniach fizyki i techniki. WN-T, Warszawa, 1995 (in Polish).
  • [79] Kącki E.: Termokinetyka. WN-T, Warsaw, 1967 (in Polish).
  • [80] Kleiber M.: Handbook of computational solid mechanics: survey and comparison of contemporary methods. Springer, 1998.
  • [81] Kokkas A.G.: Thermal analysis of multiple-layer structures. IEEE Transactions on Electron Devices, vol. 21, 1974, pp. 674-681.
  • [82] Kos A.: Modelowanie hybrydowych układów mocy i optymalizacja ich konstrukcji ze względu na rozkład temperatury. Rozprawa habilitacyjna, Wydawnictwa AGH, Kraków, 1994.
  • [83] A. Kos, G. De Mey: Thermal modelling and optimisation of power microstructures. Electrochemical Publications, British Isles, 1997.
  • [84] Körner C., Bergmann H.: The physical defects of the hyperbolic heat conduction equation. Applied Physics A, vol. 67, 1998, pp. 397-401.
  • [85] Kügler P.: A derivative-free Landweber iteration for parameter identification in certain elliptic PDEs. Inverse Problems, vol. 19, 2003, pp. 1407-1426.
  • [86] Kurpisz A., Nowak A.J.: Inverse Thermal Problems. WIT Press, Southampton, UK, 1995.
  • [87] Landweber L.: An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, vol. 73, 1951, pp. 615-624.
  • [88] Lasance C., Rosten H., Parry J.: The world of thermal characterization according to DELPHI. IEEE Transactions Components Packaging Manufacturing Technology A, vol. 20, 1997, pp. 384-398.
  • [89] Lasance C., Den Hertog D., Stehouwer P.: Creation and evaluation of compact models for thermal characterization using dedicated optimization software. In Proc. of 15th SEMITHERM, San Diego, CA, USA, 1999, pp. 189-200.
  • [90] Lasance C.: Ten years of BCI compact thermal modelling of electronic parts: A review. Heat Transfer Engineering, vol. 29, 2007, pp. 149-168.
  • [91] Leturcq P., Dorkel J., Napieralski A., Lachiver E.: A new approach to thermal analysis of power devices. IEEE Transactions on Electron Devices, vol. 34, 1987, pp. 1147-1156.
  • [92] Levenberg K.: A method for the solution of certain problems in least-squares. Quarterly of Applied Mathematics, vol. 2, 1944, pp. 164-168.
  • [93] Liao W., He L., Lepak K. M.: Temperature and supply voltage aware performance and power modeling at microarchitecture level. IEEE Transactions on Computer Aided Design, vol. 24, 2005, pp. 1042-1053.
  • [94] Lienhard J. H. IV, Lienhard J. H. V: Heat Transfer Textbook. Phlogiston Press, Cambridge, Massachusetts, USA, 2004.
  • [95] Lindsted R.D., Surty R.J.: Steady-state junction temperatures of semiconductor chips. IEEE Transactions on Electron Devices, vol. ED-19, 1972, pp. 41-44.
  • [96] Marquardt D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics, vol. 11, 1963, pp. 431-441.
  • [97] Martin P.A., Richardson J.D., Gray L.J., Berger J.R.: On Green's function for three-dimensional exponentially-graded elastic solid. Proc. of the Royal Society A, vol. 458, 2002, pp. 1931-1947.
  • [98] Masana F.N.: A new approach to the dynamic thermal modelling of semiconductor packages. Microelectronics Reliability, vol. 41, 2001, pp. 901-912.
  • [99] Masana F.N.: A straightforward analytical method for extraction of semiconductor device transient thermal parameters. Microelectronics Reliability, vol. 47, 2007, pp. 2122-2128.
  • [100] Matsevitiy Y.M.: Identifikacia v zadatchakh teploprovodnosty. Naukova Dumka, Kiev, 1982 (in Russian).
  • [101] Maudgal V.K.: Computer-aided Thermal Analysis, Hybrid Circuit Technology, May 1991, pp. 19-21.
  • [102] Monchiero M., Canal R., Gonzalez A.: Power/performance/thermal design-space exploration for multicore architectures. IEEE Transactions on Parallel Distributed Systems, vol. 19, 2008, pp. 666-681.
  • [103] Morozov V.A: On solution of functional equations by the method of regularization. Soviet Mathematics Doklady, vol. 7, 1966, pp. 414-417.
  • [104] Napieralski A., and Pompignac F.: Thermal CAD of power devices using light computer means. IEE Proceedings G, vol. 135, 1988, pp. 34-44.
  • [105] Napieralski A.: Komputerowe projektowanie układów półprzewodnikowych dużej mocy ze szczególnym uwzględnieniem ich właściwości termicznych. Politechnika Łódzka, Zeszyt Naukowy Nr 562, 1989 (in Polish).
  • [106] Neumaier A.: Solving ill-conditioned and singular linear systems: A tutorial on regularization. Review of Society for Industrial and Applied Mathematics (SIAM), vol. 40, 1998, pp. 636-666.
  • [107] Nevelsteen K., Persoons T., M. Baelmans: Heat transfer coefficients of forced convection cooled printed circuit boards, In Proceedings of the 6th International Workshop on Thermal Investigation of ICs and Systems THERMINIC, Budapest, Hungary, 24-27 September 2000, pp. 177-182.
  • [108] Ozisik M.N.: Heat Conduction. John Wiley & Sons Inc., 1993.
  • [109] Ozisik M.N., Orlande H.R.B.: Inverse Heat Transfer. Taylor & Francis, 2000.
  • [110] Pape H., and Noebauer G.: Generation and verification of BCI compact thermal models for active components according to the DELPHI/SEED methods. In Proc. 15th SEMITHERM, San Diego, CA, USA, 1999, pp. 201-211.
  • [111] Pape H, Schweitzer D, Janssen JHJ, Morelli A, Villa CM: Thermal transient modelling and experimental validation in European project PROFIT. IEEE Trans. Components and Packaging Technologies, vol. 27, 2004, pp. 530-538.
  • [112] Phillips D.L.: A technique for the numerical solution of certain integral equations of the first kind. Journal of Association for Computing Machinery, vol. 9, 1962, pp. 84-97.
  • [113] Poppe A., Farkas G., Rencz M., Benedek Z., Pohl L., Szekely V., Torki K., Mir S., and Courtois B.: Design issues of a multi-functional intelligent thermal test die. In Proc. 17th Semi-Therm, 2001, pp. 50-57.
  • [114] Press W.H., Teukolsky S.A., Flannery B.F., Wetterling W.T: Numerical recipes. Cambridge University Press, 1992.
  • [115] Protonotarios E.N., Wing O.: Theory of non-uniform RC lines. IEEE Transactions on Circuit Theory, vol. 14, 1967; pp. 2-20.
  • [116] Pulvirenti B., Barletta A., Zanchini E.: Finite-difference solution of hyperbolic heat conduction with temperature-dependent properties. Numerical Heat Transfer, vol. 34, 1998, pp. 169-183.
  • [117] Raghupathy A.P., Janssen J., Aranyosi A., Ghia U., Ghia K., Maltz W.: Development of delphi-type compact thermal models for opto-electronic packages. Journal of Electronic Packaging, vol. 133, 2011, pp. 011003-(1-10).
  • [118] Raynaud M., Bransier J.: A new finite difference method for the nonlinear heat conduction problem. Numerical Heat Transfer, vol. 9, 1986, pp. 27-42.
  • [119] Rencz M., Szekely V.: Dynamic thermal multiport modeling of IC packages. IEEE Transactions on Component and Packaging Technology, vol. 24, 2001, pp. 596-604.
  • [120] Rencz M., Szekely V.: Measuring partial thermal resistances in a heat-flow path. IEEE Transactions on Components and Packaging Technologies, vol. 25, 2002, pp. 547-553.
  • [121] Rencz M., Szekely V.: Studies on the non-linearity effects in dynamic compact model generation of packages. IEEE Transactions on Components and Packaging Technology, vol. 27, 2004, pp. 124-130.
  • [122] Rencz, M., Poppe A., Kollar E., Ress S., and Szekely V.: Increasing the accuracy of structure function based thermal material parameter measurements. IEEE Trans. on Components and Packaging Technology, vol. 28, No. 1, 2005, pp. 51-57.
  • [123] Rizzo F.J., Martin P.A., Roberts R.A.: Boundary elements and a Green's function library. Proceedings of NIST workshop on Green's functions and boundary element analysis, National Institute of Science Technology, Special Publication 910, 1996.
  • [124] Roach G.F.: Green's functions. Cambridge University Press, 1982.
  • [125] Rottiers L., De Mey G.: An automatic placement algorithm for optimizing thermal behavior of hybrid circuits. In Proc. 6th Microelectronics Conference, Bournemouth, UK, 1987, pp. 325-331.
  • [126] Rottiers L., De Mey G.: Hot spot effects in hybrid circuits. IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 6, 1988, pp. 274-278.
  • [127] Sabry M.N.: Compact thermal models for electronic systems. IEEE Transactions on Components and Packaging Technologies, vol. 26, 2003, pp. 179-185.
  • [128] Sabry M.N.: High-precision compact thermal models. IEEE Transactions on Components and Packaging Technologies, vol. 28, 2005, pp. 623-629.
  • [129] Sales M.A., Gray L.J.: Evaluation of the anisotropic Green's function and its derivatives. Computers and Structures, Vol. 69, 1998, pp. 247-254.
  • [130] Scherzer O.: A modified Landweber iteration for solving parameter estimation problems. Applied Mathematics and Optimization, vol. 38, 1998, pp. 45-68.
  • [131] Selberherr S.: Analysis and simulation of semiconductor devices. Springer, 1984.
  • [132] Sergent J.E., Harper C.: Hybrid Microelectronics Handbook. McGraw-Hill, 1995.
  • [133] Shammas N.Y., Rodriguez M.P., Masana F.N.: A simple method for evaluating transient thermal response of semiconductor devices. Microelectronics Reliability, vol. 42, 2002, pp. 109-117.
  • [134] Shenefelt J.R., Luck R., Taylor R.P., and Berry J.T.: Solution to inverse heat conduction problems employing singular value decomposition and model reduction. International Journal of Heat and Mass Transfer, vol. 45, 2002, pp. 67-74.
  • [135] Shnaid I.: Thermodynamically consistent description of heat conduction with finite speed of heat propagation. International Journal of Heat and Mass Transfer, vol. 46, 2003, pp. 3853-3863.
  • [136] Skadron K., Stan M., Sankaranarayan K., Huang W., Velusamy S., Tarjan D.: Temperature-aware microarchitecture: Modeling and implementation. ACM Trans. on Architectures and Code Optimisation, vol. 1, 2004, pp. 94-125.
  • [137] Sofia J.W.: Analysis of thermal transient data with synthesized dynamic models for semiconductor devices. IEEE Trans. Components Packaging Technologies, vol. 18, 1995, pp. 39-47.
  • [138] Stakgold I.: Green's functions and boundary value problems, Willey-Interscience, 1979.
  • [139] Staniszewski B.: Wymiana ciepła. PWN, Warszawa, 1980.
  • [140] Stolz G.: Numerical Solutions to Inverse Problems of Heat Conduction for Simple Shapes. Transactions ASME, Journal of Heat Transfer, vol. 82, 1960, pp. 20-26.
  • [141] Sutradhar A., Paulino G.H., Gray L.J.: Transient heat conduction in non-homogenous materials by Laplace transform Galerkin boundary element method. Engineering Analysis with Boundary Elements, Vol. 26, 2002, pp 119-132.
  • [142] Szargut J.: Modelowanie numeryczne pól temperatury. WNT, Warszawa, 1992.
  • [143] Szekely V, Van Bien T.: Fine structure of heat flow path in semiconductor devices: A measurement and identification method. Solid-State Electronics, vol. 31, 1988, pp. 1363-1368.
  • [144] Szekely V.: On the representation of infinite-length distributed RC one-ports. IEEE Transactions on Circuits and Systems, vol. 38, 1991, pp. 711-719.
  • [145] Szekely V.: Thermal monitoring of electronic structures. Microelectronics Journal, vol. 25, 1994, pp. 157-170.
  • [146] Szekely V.: A new evaluation method of thermal transient measurement results. Microelectronics Journal, vol. 28, 1997, pp. 277-292.
  • [147] Szekely V., Rencz M., Karam J.-M., Lubaszewski M., Courtois B.: Thermal monitoring of self-checking systems. Journal of Electronic Testing, 1998, pp. 81-92.
  • [148] Szekely V., and Rencz M.: Thermal dynamics and the time constant domain. IEEE Transactions on Components Packaging Technologies, vol. 23, 2000, pp. 587-594.
  • [149] Székely V., Nagy A., Török S., Hajas G., Rencz M.: Realization of electronically controlled thermal resistance. Microelectronics Journal, vol.31, 2000, pp. 811-814.
  • [150] Szekely V.: Enhancing reliability with transient thermal testing. Microelectronics Reliability, vol. 42, 2002, pp. 629-640.
  • [151] Taler J., and Duda P.: Experimental verification of space marching methods for solving inverse heat conduction problems. Heat and Mass Transfer, vol. 36, 2000, pp. 325-331.
  • [152] Tarantola A.: Inverse Problem Theory: Methods for Data Fitting Model Parameter Estimation. Elsevier, 1987.
  • [153] Thomee V.: From finite differences to finite elements. A short history of numerical analysis of partial differential equations. Journal of Computational and Applied Mathematics, vol. 128, 2001, pp. 1-54.
  • [154] Tikhonov A.N.: O ryesheniy niekorrektno postavlyennykh zadatch i metodye ryegularyzatsii. Doklady ?kademii Nauk SSSR, Vol. 151, 1963, pp. 501-504.
  • [155] Tikhonov A.N.: Obratnye zadatchy teplovodnostiy. Inzhinerno-Fiziczieski Zhurnal, vol. 29, 1975, pp. 7-12 (in Russian).
  • [156] Tikhonov A.N., Arsenin W.J.: Solutions of Ill-posed Problems. Winston & Sons, Washington, 1977.
  • [157] Touhei T.: Complete eigenfunction expansion form of Green's function for elastic layered half-space. Archive of Applied Mechanics, vol. 72, 2002, pp. 13-38.
  • [158] Tuan P.C., Ji C.C., Fong L.W., and Huang W.T.: An input estimation approach to on-line two-dimensional inverse heat conduction problems. Numerical Heat Transfer B, vol. 29, 1996, pp. 345-363.
  • [159] Van Damme K., Baelmans M., Christiaens S., and Nelemans W.: On the use of compact models for board level thermal simulations. In Proceedings of the 6th International Workshop on Thermal Investigation of ICs & Systems THERMINIC, Budapest, Hungary, 24-27 September 2000, pp. 199-204.
  • [160] Vermeersch B., De Mey G.: Influence of substrate thickness on thermal impedance of microelectronic structures. Microelectronics Reliability, vol. 47, 2007, pp. 437-443.
  • [161] Vernotte P.: Les paradoxes de la théorie continue de l'équation de la chaleur, Comptes Rendus, vol. 246, 1958, pp. 3154-3155.
  • [162] Wachutka G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design, vol. 9, 1990, pp. 1141-1149.
  • [163] Wang B., Mazumder P.: Accelerated chip-level thermal analysis using multilayer Green's function. IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 26, 2007, pp. 325-344.
  • [164] Weinberg L.: Network Analysis and Synthesis. McGraw-Hill, New York, 1962.
  • [165] Welch G., Bishop G.: An introduction to the Kalman filter. Course materials from SIGGRAPH conference, 12-17 August 2001, Los Angeles, USA.
  • [166] Widrow B., Stearns S.D.: Adaptive signal processing, Prentice Hall, 1985.
  • [167] Wiener N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series, Wiley, 1949.
  • [168] Więcek B.: Odprowadzanie ciepła w układach elektronicznych ze szczególnym uwzględnieniem konwekcji naturalnej i promieniowania. Zeszyty naukowe nr 820, Politechnika Łódzka, Łódź, 1999 (in Polish).
  • [169] Wiśniewski S.: Wymiana ciepła. PWN, Warszawa, 1988.
  • [170] Woodbury K.A. (ed.): Inverse Engineering Handbook. CRC Press, 2003.
  • [171] Wójciak W.: Implementacja czujników temperatury w technologii CMOS i ich zastosowanie do termicznego monitorowania struktur półprzewodnikowych. PhD Thesis, Politechnika Łódzka, 1998 (in Polish).
  • [172] Yarny Y., Ozisik M.N., Bardon J.P.: A general optimization method using adjoint equation for solving multidimensional inverse heat conduction. International Journal of Heat and Mass Transfer, vol. 34, 1991, pp. 2911-2919.
  • [173] Yen D.H.Y. Beck J.V., McMasters R.L., Amos D.E.: Solution of an initial boundary value problem for heat conduction in parallelepiped by time partitioning. International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 4267-4279.
  • [174] Zeidler E.: Applied Functional Analysis: Main Principles & Applications, Berlin, Springer, 1995.
  • [175] Ziegler J.G., Nichols N.: Optimum settings for automatic controllers, Transactions of ASME, vol. 64, 1942, pp. 759-768.
  • [176] Zienkiewicz O.C.: The Finite Element Method. McGraw Hill, 1977.
  • [177] Zubert M., Napieralski A., and Napieralska M.: The new general method for thermal and electro-thermal model reduction. In Proc. 6th Workshop THERMINIC, Budapest, Hungary, 24-27 September 2000, pp. 62-67.
  • [178] JEDEC Standard JESD15-1: Compact thermal model overview, 2008.
  • [179] JEDEC Standard JESD15-2: Integrated circuit thermal test method environmental conditions - natural convection (still air), 2007.
  • [180] JEDEC Standard JESD15-4: DELPHI compact thermal model guideline, 2008.
  • [181] JEDEC Standard JESD51-4: Thermal test chip guideline, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0032-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.