PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Otrzymywanie włókien nanocelulozy

Identyfikatory
Warianty tytułu
EN
Preparation of cellulose nanofibers
Języki publikacji
PL
Abstrakty
PL
Nanotechnologia należy do nauk technologicznych, obejmujących otrzymywanie oraz wykorzystywanie nowych nanomateriałów, takich jak nanoceluloza. Nanowłókna celulozy można otrzymywać dwoma sposobami top-down oraz buttom-up. Obecnie stosuje się głównie pierwszą metodę, w której zawiera się obróbka mechaniczna, chemiczna oraz enzymatyczna. Najlepsze efekty daje kombinacja utleniania chemicznego połączona z rozdrobnieniem mechanicznym, która pozwala na otrzymanie włókien o średnicy kilku nanometrów. Najbardziej przyjazną środowisku oraz przyszłościową okazuje się hydroliza enzymatyczna, która nie wymaga dużych nakładów finansowych i nie powoduje powstawania substancji trudnych do utylizacji. Otrzymane nanowłókna posiadają wiele potencjalnych zastosowań ze względu na właściwości reologiczne, takie jak wysoki moduł Younga i odporność na rozciąganie przy niskiej rozszerzalności cieplnej.
EN
Nanotechnology is the science of technology, including the receiptand use new nanomaterials, such as nanocellulose. Cellulose nanofibers can be prepared in two different ways: top-down and bottomup. Currently researchers use the first method, which includes mechanical, chemical and enzymatic treatments. The best results are given by a combination of chemical oxidation and mechanical fragmentation, which allows to obtain nanofibers with a diameter of several nanometers. The most environmentally friendly and prospective is enzymatic hydrolysis, which does not require large money and does not cause production of substances which are difficult to dispose. Nanofibers have many potential applications due to rheological properties such as high Young's modulus and tensile strength.
Rocznik
Strony
87--100
Opis fizyczny
Bibliogr. 73 poz.
Twórcy
autor
autor
autor
autor
Bibliografia
  • 1. Feynman P. There's Plenty of Room at the Bottom (transkrypcja wykładu z dnia 29 grudnia 1959), http://www.zyvex.com/nanotech/feynman.html.
  • 2. NanoWord Newsletter nr 1. http://www.nanoword.net/library/nwn/1.html.
  • 3. Poole P, Owens J. Introduction to nanotechnology. John Wiley & Sons 2003.
  • 4. Gianella A, Jarzyna A, Mani V, Ramachandran S, Calcagno C, Tang J, Kann B, Dijk R, Thijssen VL, Griffioen W, Storm G, Fayad A, Mulder M. Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer. ACS Nano 2011, 5:4422-4433.
  • 5. Nano acceleration network. http://nanotechnology.espaces.com/nano_products.html.
  • 6. Kelsall W, Hamley W, Geoghegan M. Nanoscale Science and Technology. John Wiley & Sons 2005.
  • 7. Kelsall W, Hamley W, Geoghegan M, Kurzydłowski K. Nanotechnologie, PWN, Warszawa 2008.
  • 8. Balzani V. Nanoscience and nanotechnology. Pure Appl Chem 2008, 80:1631-1650.
  • 9. Nano acceleration network. http://nanotechnology.espaces.com/nano_products.html.
  • 10. European Commission Nanotechnology Research needs on nanoparticles. Proc workshop held in Brussels, 25-26.01.2005.
  • 11. Schaefer K, Thomas H, Dalton P, Moeller M. Nano-fibres for filter materials. http://www.scribd.com/doc/30357529/Nano-Fibres-for-Filter-Materials.
  • 12. Yamashita Y, Ko F, Miyake H, Higashiyama A. Establishment of nano fiber preparation technique for nanocomposite. 16th Int Conf Composite Materials 2007.
  • 13. Fan Y, Fukuzumi H, Saito T, Isogai A. Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 2012, 50:69-76.
  • 14. Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R. Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 2008, 110:890-899.
  • 15. Fan Y, Saito T, Isogai A. TEMPO-mediated oxidation of ß-chitin to prepare individual nanofibrils. Carbohydr Polym 2009, 77:832-838.
  • 16. Fan Y, Saito T, Isogai A. Individual chitin nano-whiskers prepared from partially deacetylated ?-chitin by fibril surface cationization. Carbohydr Polym 2010, 79: 1046-1051.
  • 17. Cardamone M, Martin J. Keratin coatings for wool: shrinkproofing and nanoparticle delivery. Macromol Symp 2008, 272:161-166.
  • 18. Martin J, Cardamone M, Irwin L, Brown M. Keratin capped silver nanoparticlessynthesis and characterization of a nanomaterial with desirable handling properties. Colloids Surf B Biointerfaces 2011, 54-61.
  • 19. Xing Z, Yuan J, Chae W, Kang I, Kim S. Keratin nanofibers as a biomaterial. Int Conf Nanotechnology and Biosensors, Singapore, 2011, 2:120-124.
  • 20. Tonin C, Aluigi A, Varesano A, Vineis C. Keratin-based nanofibres, in: nanofibers. InTech 2010, 139-158.
  • 21. Adomavičiute E, Milašius R, Žemaitaitis A, Bendoraitiene J, Leskovšek M, Demšar A. Methods of forming nanofibres from bicomponent PVA/Cationic starch solution. Fib Text East Eur 2009, 17:29-33.
  • 22. Ayse A. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Comp Sci Techn 2008, 68:557-565.
  • 23. Fujisawa F, Okita Y, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohyd Polym 2011, 84:579-583.
  • 24. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3:71-85.
  • 25. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stabil 2010, 95:1394-1398.
  • 26. Hayashi N, Kondo T, Ishihara M, Enzymatically produced nano-ordered short elements containing cellulose Ib crystalline domains. Carbohyd Polym 2005, 61: 191-197.
  • 27. Khalil A, Bhat A, Yusra I. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr Polym 2011, 87:963-979.
  • 28. Eichhorn S, Dufresne A. Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45:1-33.
  • 29. Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010, 17:459-494.
  • 30. Cheng Q, Wang S, Rials T, Lee S. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose, 2007, 14:593-602.
  • 31. Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B. Nanocellulose materials-different cellulose, different functionality. Macromol Symp 2009, 280:60-71.
  • 32. Hubbe M, Rojas O, Lucia L, Sain M. Cellulosic nanocomposites: a review. Bioresources 2008, 3:929-980.
  • 33. Nukavarapu S, James R, Hogan M, Laurencin C. Recent patents on electrospun biomedical nanostructures: an overview. Rec Patents on Biomed Eng 2008, 1:68-78.
  • 34. Cengiz F, Krucińska I, Gliścińska E, Chrzanowski M, Göktepe F. Comparative analysis of various electrospinning methods of nanofibre formation. Fib Text East Eur 2009, 17:13-19.
  • 35. Chiung H, Lin K, Lu T, Lou L, Chao C. Evaluation of the electrospinning manufacturing process based on the preparation of pva composite fibres. Fib Text East Eur 2009, 17:34-37.
  • 36. Dabirian F, Hosseini A. Novel method for nanofibre yarn production using two differently charged nozzles. Fib Text East Eur 2009, 17:45-47.
  • 37. Sójka-Ledakowicz J, Lewartowska J, Kudzin M, Jesionowski T, Siwińska-Stefańska K, Krysztafkiewicz A. Modification of textile materials with micro- and nano-structural metal oxides. Fib Text East Eur 2008, 16:112-116.
  • 38. Syverud K, Chinga-Carrasco G, Toledo J, Toledo P. A comparative study of eucalyptus and pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohyd Polym 2011, 84:1033-1038.
  • 39. Seydibeyoglu Ö, Oksman K. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Comp. Sci Techn 2008, 68:908-914.
  • 40. Lee Y, Chun S, Kang I, Park J. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 2009, 15:50-55.
  • 41. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T. Highly transparent films from carboxymethylated microfibrillate cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 2011, 119:2652-2660.
  • 42. Yu C, Huimin T. Effects of cellulase on the modification of cellulose. Carbohyd Res 2002, 337:1291-1296.
  • 43. Hu Z, Foston M, Ragauskas A. Comparative studies on hydrothermal pretreatment and enzymatic saccharification of leaves and internodes of alamo switchgrass. Biores Techn 2011, 102:7224-722.
  • 44. Zuluaga R, Putaux J, Cruz J, Vélez J, Mondragon I, Ganán P. Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohyd Polym 2009, 76:51-59.
  • 45. Bhattacharya D, Germinario L, Winter W. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohyd. Polym. 2008, 73:371-377.
  • 46. Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010, 17:459-494.
  • 47. Nakagaito A, Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 2004, 78:547-552.
  • 48. Wang B, Sain M. Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 2007, 56:538-546.
  • 49. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Biores Technol 2008, 99:1664-1671.
  • 50. Lee S, Chun S, Kang I, Park J. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 2009, 15:50-55.
  • 51. Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T. Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 2011, 119:2652-2660.
  • 52. Tischer P, Sierakowski R, Westfahl H, Tischer C. Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 2010, 11:1217-1224.
  • 53. Zhao P, Fenga X, Gao H. Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 2007, 90:073112-1-073112-2.
  • 54. Correa C, Teixeira E, Pessan L, Mattoso C. Cellulose nanofibers from curaua fibers. Cellulose 2010, 17:1183-1192.
  • 55. Kumar S, Upadhyaya J, Negi Y. Preparation of nanoparticles from corn cobs by chemical treatment methods. Bioresources, 2010, 5:1292-1300.
  • 56. Bhatnagar A, Sain M. Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Comp 2005, 24:1259-1268.
  • 57. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stabil 2010, 95:1394-1398.
  • 58. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71-85.
  • 59. Cherian M, Pothan A, Nguyen-Chung T, Mennig G, Kottaisamy M, Sabu T. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 2008, 56:5617-5627.
  • 60. Kaushik A, Singh M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 2011, 346:76-85.
  • 61. Hubbe M, Rojas O, Lucia L, Sain M. Cellulosic nanocomposites: a review. BioResources 2008, 3:929-980.
  • 62. Janardhnan S, Sain M. Isolation of cellulose microfibrils - an enzymatic approach. Bioresources, 2006, 2:176-188.
  • 63. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson P, Ikkala O, Lindström T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 2007, 8:1934-1941.
  • 64. Satyamurthy P, Jain P, Balasubramanya R, Vigneshwaran N. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 2001, 83:122-129.
  • 65. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 2011, 83:1804-1811.
  • 66. Vick B. Adhesive bonding of wood materials, wood handbook: wood as an engineering material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, 1999, 9-1-9-24.
  • 67. Eichhorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A, Mangalam A, Simonsen J, Benight A, Bismarck A, Berglund L, Peijs T. Review: current international research into cellulose nanofibres and nanocomposites, J Mater Sci 2010, 45:1-33.
  • 68. Yano H, Sugiyama J, Nakagaito A, Nogi M, Matsuura T, Hikita M, Handa K. Optically transparent composites reinforced with networks of bacterial nanofibers, Adv Mater 2005, 17:153-155.
  • 69. Nogi M, Iwamoto S, Nakagaito A, Yano H. Optically transparent nanofiber paper. Adv Mater 2009, 21:1595-1598.
  • 70. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund L, Ikkala O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 2008, 4:2492-2499.
  • 71. Soykeabkaew N, Arimoto N, Nishino T, Peijs T. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres, Compos Sci Technol 2008, 68:2201-2207.
  • 72. Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 2009, 16:435-444.
  • 73. http://www.nanotec.org.uk/finalReport.htm. Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society and Royal Academy of Engineering. 2004, 35-50.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0032-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.