Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Surface proteins, essential structural components of bacterial cell wall, are synthesized as precursors equipped with specific functional domains. The N-terminal signal module enables translocation across the plasma membrane via Sec or Tat pathways, while sorting motif, located in the C-terminus, is responsible for protein attachment to the cell wall peptidoglycan. Only exception are lipoproteins which lipoylated cysteinyl residue connected with bacterial membrane is in N-terminal part of protein. Most of surface proteins, as surface (S-) layer proteins, internalins or autolysins, are linked to the different structures of cell wall through non covalent forces. From the other hand, molecules with LPXTG motif, which attachment involves sortase activity, are linked to the peptidoglycan by covalent bond. Due to structural, chemical and physicochemical properties, surface proteins are attractive components of diverse industrial or medical systems. Knowledge about mechanism of anchoring proteins to the cell envelope will open new possibility of their applications.
Czasopismo
Rocznik
Tom
Strony
51--64
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
autor
- Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Poland, patrycja.pietraszek@edu.p.lodz.pl
Bibliografia
- 1. Schar-Zammaretti P, Ubbink J. The cell wall of Lactic Acid Bacteria: surface constituents and macromolecular conformations. Biophys. J. 2003, 23:4076-4092.
- 2. Weygand M, Wetzer B, Pum D, Sleytr UB, Cuvillier N, Kjaer K, Howes PB, Losche M. Bacterial S-Layer protein coupling to lipids: X-Ray reflectivity and grazing incidence diffraction studies. Biophys. J. 1999, 76:458-468.
- 3. Antikainen J, Korhonen TK, Kuparinen V, Toba T, Roos S. Surface proteins of Lactobacillus involved in host interactions. In: Lactobacillus molecular biology: from genomics to probiotics, Ljungh A, Wadström T. Eds.; Caister Academic Press, Norfolk, UK, 2009, pp. 95-114,.
- 4. Sleytr UB., Sara M, Pum D, Schuster B, Messner P, Schaffer C. Self-assembly protein systems:microbial S-layers. Biopolymers. 2002, 7:285-338.
- 5. Pijkeren JP, O'Toole PW. Comparative and functional genomics of the genus Lactobacillus. In: Lactobacillus molecular biology: from genomics to probiotics, Ljungh A, Wadström T, Eds.; Caister Academic Press, Norfolk, UK, 2009, pp. 59-82.
- 6. Costerton JW, Ingram JM, Cheng KJ. Structure and function of the cell envelope of Gram-negative bacteria. Bacteriol. Rev. 1974, 38:87-110.
- 7. Sara M, Sleytr UB. S-layer proteins. J. Bacteriol. 2000, 182:859-868.
- 8. Jarosch M, Egelseer EM, Huber C, Moll D, Mattanovich D, Sleytr UB, Sara M. Analysis of the structure-function relationship of the S-layer protein SbsC of Bacillus stearothermophilus ATCC 12980 by producing truncated forms. Microbiology. 2001, 147:1353-1363.
- 9. Pum D, Neubauer A, Gyorvary E, Sara M, Sleytr UB. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 2000, 11:100-107.
- 10. Avall-Jääskeläinen S. Characterization and applications of Lactobacillus brevis S-layer proteins and evaluation of Lactococcus lactis as a porcine cytokine producer. http://ethesis.helsinki.fi/julkaisut/ela/perus/vk/avalljaaskelainen/characte.pdf.
- 11. Blecha A, Zarschler K, Sjollema K, Veenhuis M, Rödel G. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells. BioMed Central. 2005, 4:1-11.
- 12. Claus H, Akça E, Debaerdemaeker T, Evrard C, Declercq JP, Harris JR, Schlott B, König H. Molecular organization of selected prokaryotic S-layer proteins. Can. J. Microbiol. 2005, 51:731-743.
- 13. Avall-Jääskeläinen S, Palva A. Lactobacillus surface layers and their applications. FFEMS Microbiol. Rev. 2005, 29:511-529.
- 14. Mignot T, Mesnage S, Couture-Tosi E, Mock M, Fouet A. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol. 2002, 46:1615-1627.
- 15. Schaffer C, Messne P. The structure of secondary cell wall polymers: how Grampositive bacteria stick their cell walls together. Microbiology. 2005, 151:643-651.
- 16. Li J, Hu X, Yan J, Yuan Z. Species-specific cell wall binding affinity of the S-layer proteins of mosquitocidal bacterium Bacillus sphaericus C3-41. Appl. Environ. Microbiol. 2009, 75:3891-3895.
- 17. Bierne H, Garandeau C, Pucciarelli MG, Sabet C, Newton S, Garcia-del Portillo F, Cossart P, Charbit A.: Sortase B, a New Class of Sortase in Listeria monocytogenes. J. Bacteriol. 2004, 186:1972-1982.
- 18. Cossart P, Jonquieres R. Sortase, a universal target for therapeutic agents against Gram-positive bacteria? PNAS. 2000, 97:5013-5015.
- 19. Garandeau C, Réglier-Poupet H, Dubail I, Beretti JL, The European Listeria Genome Consortium, Berche P, Charbit A. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect. Immun. 2002, 70:1382- 1390.
- 20. Mazmanian SK, Ton-That H, Su K, Schneewind O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. PNAS. 2002, 99:2393-2298.
- 21. Konto-Ghiorghi Y, Mairey E, Mallet A, Dume´nil G, Caliot E, Trieu-Cuot P, Dramsi S. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PloS Pathog. 2009, 5:1-13.
- 22. Marraffini LA, DeDent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2006, 70:192-221.
- 23. Navarre W, Schneewind O. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 1999, 63:174-229.
- 24. Gaspar AH, Marraffini LA, Glass EM, DeBord KL, Ton-That H, Schneewind O. Bacillus anthracis Sortase A (SrtA) anchors LPXTG motif-containing surface proteins to the cell wall envelope. J. Bacteriol. 2005, 187:4646-4655.
- 25. Ton-That H, Liu G, Mazanian SK, Faull KF, Schneewind O. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. PNAS. 1999, 96:12424-12429.
- 26. Kausmally L, Johnsborg O, Lunde M, Knutsen E, Havarstein LS. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 2005, 187:4338-4345.
- 27. Gosink KK, Mann ER, Guglielmo C, Toumanen EI, Masure R. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun. 2000, 68:5690-5695.
- 28. Mann B, Orihuela C, Antikainen J, Gao G, Sublett J, Korhonen TK, Tuomanen E. Multifunctional role of choline binding protein G in pneumococcal pathogenesis. Infect. Immun. 2006, 74:821-829.
- 29. Luo R, Mann B, Lewis WS, Rowe A, Heath R, Stewart ML, Hamburger AE, Sivakolundu S, Lacy ER, Bjorkman PJ, Tuomanen E, Kriwacki RW. Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO. 2005, 24:34-43.
- 30. Maestro B, Gonzalez A, Garcia P, Sanz JM. Inhibition of pneumococcal cholinebinding proteins and cell growth by esters of bicyclic amines. FEBS. 2007, 274:364-376.
- 31. Jedrzejas MJ. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 2001, 65:187-207.
- 32. Attali C, Frolet C, Durmort C, Offant J, Vernet T, Guilmi AM. Streptococcus pneumoniae choline-binding protein E interaction with plasminogen/plasmin stimulates migration across the extracellular matrix. Infect. Immun. 2008, 76:466-476.
- 33. Marino M, Braun L, Cosart P, Ghosh P. Structure of the InlB Leucine Rich Repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol. Cell. 1999, 4:1063-1072.
- 34. Shen Y, Naujokas M, Park M, Ireton K. InlB-dependent internalization of Listeria is mediated by the met receptor tyrosine kinase. Cell. 2000, 103:501-510.
- 35. Courtemanche N, Barrick D. The Leucine-Rich Repeat domain of internalin B folds along a polarized N-terminal pathway. Structure. 2008, 16:705-714.
- 36. Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol. Mol. Biol. Rev. 2007, 71:377-397.
- 37. Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 2002, 10:438-245.
- 38. Smith GA, Theriot JA, Portnoy DA. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 1996, 135:647-660.
- 39. Friederichl E, Gouin E, Hellio R, Kocks C, Cossart P, Louvard D. Targeting of Listeria monocytogenes ActA protein to the plasma membrane as a tool to dissect both actin-based cell morphogenesis and ActA function. EMBO. 1995, 14:2731-2744.
- 40. Brundage R, Smith GA, Camilli A, Theriot JA, Portnoy DA. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Natl. Acad. Sci. 1993, 90:11890-11894.
- 41. Steffen P, Schafer DA, David V, Gouin E, Cooper JA, Cossart P. Listeria monocytogenes ActA protein interacts with phosphatidylinositol 4,5-bisphosphate in vitro. Cell Motil. Cytoskeleton. 2000, 45:58-66.
- 42. Navarre WW, Daefler S, Schneewind O. Cell wall sorting of lipoproteins in Staphylococcus aureus. J. Bacteriol. 1996, 178:441-446.
- 43. Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC. Lipoprotein biogenesis in Grampositive bacteria: knowing when to hold 'em, knowing when to fold 'em. Trends Microbiol. 2008, 17:13-27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0032-0047