PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biodegradowalność hydrolizatów z dezintegracji termicznej odpadów komunalnych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Production of biodegradable hydrolysate from municipal solid waste using thermal disintegration
Języki publikacji
PL
Abstrakty
PL
Omówiono zmiany charakterystyki dezintegrowanej termicznie biofrakcji odpadów komunalnych. Wykonano serie badań, w których bioodpady poddawano obróbce w temperaturach 55, 75, 95, 115, 135, 155, 175°C w czasie 0,5, 1 i 2 godzin. Potencjalną biodegradowalność hydrolizatów oceniono w oparciu o stężenie lotnych kwasów tłuszczowych, zawartość węgla organicznego i iloraz C:N. Stwierdzono, że parametrem decydującym o sprawności termohydrolizy jest temperatura, a czas procesu ma mniejszy wpływ. Dezintegracja odpadów w całym zakresie temperatur spowodowała wzrost ilości OWO w hydrolizatach. Najwyższe stężenie rozpuszczonego węgla organicznego (odpowiednio 9125 i 8899 gC/m3) oznaczono w hydrolizatach po dezintegracji odpadów w czasie 1 i 2 h oraz w temperaturze 175°C. Wyłącznie w wysokich temperaturach obróbki, od 135 do 175°C, na ilość uzyskanych lotnych kwasów tłuszczowych wyraźnie wpływała nie tylko temperatura, ale również czas procesu. Najwyższe stężenie LKT w hydrolizatach uzyskano w temperaturze 175°C (1 i 2 h); wynosiło ono około 1000 gCH3COOH/m3. Wraz ze wzrostem temperatury dezintegracji wartości ilorazu C:N w hydrolizatach zwiększały się od 10:1 do 20:1.
EN
The rate and effectiveness of biodegradation of organic matter depends on many factors such as concentration of substrate and biomass, content of biodegradable organic carbon, the degree of microorganisms adopting, the characteristic and concentration of the final acceptor of electrons, the presence of nutrients, inhibitors and catalysts, suitable environmental conditions. Fundamental to the processes of biodegradation is also a relationship between organic carbon and other nutrients, as well as access to the macro-and micronutrients. One method of improving the ratio C:N and hence the biodegradability is the mixing of substrates such as in the process of co-fermentation or composting, where usually one of the substrates is in greater proportion (> 50%). Large potential for improving the characteristics of biowaste also give disintegration methods. The article discusses the changing of characteristics of thermally disintegrated biowaste. Biowaste was at temperatures of 55, 75, 95, 115, 135, 155, 175°C for 0.5, 1 and 2 hours treated. The potential biodegradability of hydrolysates was on the concentration of volatile fatty acids, organic carbon content and the ratio C: N rated. It was found that the principal parameter of thermo hydrolyses process efficiency is temperature and time has less impact. Disintegration of the waste in the whole range of temperatures has increased of the amount of TOC in the hydrolysates. The highest concentration of dissolved organic carbon (respectively 9125 and 8899 gC/m3) were determined in hydrolysates after the disintegration of the waste during the 1 and 2 h, and at 175°C. Only in the high temperature treatment, from 135 to 175°C, the amount of generated volatile fatty acids specifically was influenced not only from temperature, but also from a time of process The highest VFA concentration in hydrolysates achieved at 175°C (1 and 2 h) and it was approximately 1000 g CH3COOH/m3. With increasing temperature of disintegration the ratio C:N in hydrolysates increased from 10:1 to 20:1.
Rocznik
Strony
281--290
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
Bibliografia
  • [1] Uchwała Nr 217 Rady Ministrów z dnia 24 grudnia 2010 r. w sprawie "Krajowego planu gospodarki odpadami 2014" (MP Nr 101, poz. 1183). Dyrektywa Rady 1999/31/WE z dnia 26 kwietnia 1999 r. w sprawie składowania odpadów, Dz. Urz. WE L 182 z 16.07.1999, s. 1 z późn. zm.
  • [2] Garci´A.A.J., Esteban M.B., Ma´Rquez M.C., Ramos P., Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs, Waste Management 2005, 25, 780-787.
  • [3] Bobleter O., Hydrothermal degradation of polymers derived from plants, Progress in Polymer Science 1994, (19), 797-841.
  • [4] Lynd L.R., Weimer P.J., Van Zyl W.H., Pretorius I.S., Microbial cellulose utilization: fundamentals and biotechnology, Microbial and Molecular Biology Research 2002, 66, 506- -577.
  • [5] Delgenes J.P., Penaud V., Moletta R., Pretreatment for the enhancement of anaerobic digestion, [w:] J. Mata-Alvarez (ed.), Biomethanisation of the Organic Fraction of Municipal Solid Wastes, IWA Publishing, London 2003, 201-228.
  • [6] Ryanal J., Delgenes J.P., Moletta R., Two phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process, Bioresource Technology 1998, 65, 97-103.
  • [7] Barlaz M.A., Ham R.K., Schaefer D.M., Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics, Critical Reviews in Environmental Control 1990, 19(6), 557-584.
  • [8] El-Fadel M., Findikakis A.N., Lechic J.O., Environmental impacts of solid waste landfilling, Journal of Environmental Management 1997, 50, 1-27.
  • [9] Fox M.H., Noike T., Ohki T., Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste, Water Science and Technology 2003, 48(4), 77-84.
  • [10] Chynoweth D., Isaacson R., Anaerobic Digestion of Biomass, Elsevier Applied Science Publishers 1987.
  • [11] Deublein D., Steinhauser A., Biogas from Waste and Renewable Resources, Wiley-VCH Verlag, 2008.
  • [12] Jędrczak A., Biologiczne przetwarzanie odpadów, WN PWN, Warszawa 2007.
  • [13] Khanal S.K., Anaerobic Biotechnology for Bioenergy Production, Wiley-Blackwell, A John Wiley&Sons Publications, 2008.
  • [14] Müller J.A., Prospects and problems of sludge pre-treatment processes, Water Sci. Technol. 2001, 44(10).
  • [15] Elbing G., Dünnebeil A., Thermal disintegration with subsequent digestion lab-scale investigation, Korrespondenz Abwasser 1999, 46, 538-547.
  • [16] Myszograj S., The influence of thermo-chemical treatment of primary sludge on methane fermentation process, [w:] Environmental Protection into the Future, red. W. Nowak, J. Bień, Częstochowa 2007, 228-237.
  • [17] Myszograj S., Effects and mathematical modelling of thermal pretreatment of waste activated sludge, Polish Journal of Environmental Studies 2010, 2, 166-170.
  • [18] Li Y.Y., Noike T., Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Journal of Water Science and Technology 1992, 26, 3-4, 857-866.
  • [19] Wilson Ch.A., Novak J.T., Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Research 2009, 43, 4489-4498.
  • [20] Bougrier C., Delgenes J.P., Carrere H., Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion, Chemical Engineering Journal 2008, 139(2), 236-244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0032-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.