PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analiza struktury substancji humusowych gleb po wprowadzeniu węgla brunatnego na podstawie widm fluorescencyjnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of humic substances structure in soils after brown coal application with use of 3-D fluorescence spectroscopy
Języki publikacji
PL
Abstrakty
PL
Badania dotyczyły analizy właściwości substancji humusowych (SH) oraz kształtowania struktury kwasów huminowych (KH) gleb po wprowadzeniu preparatu wytworzonego na bazie (85%) odpadowego węgla brunatnego. Do badań wykorzystano materiał glebowy z wieloletnich statycznych doświadczeń polowych i mikropoletkowych, a jako źródło materii organicznej Rekulter preparat wyprodukowany na bazie węgla brunatnego odpadowego i węgla brunatnego typu ziemistego z Zagłębia Konińskiego (KWB Konin). Niższe wartości intensywności fluorescencji na widmach 3-D EEM dla KH z gleby rdzawej (piaszczystej) wskazują na większy wpływ materii organicznej z węgla brunatnego na gleby bardzo lekkie piaszczyste w porównaniu do gleb cięższych (brunatna kwaśna, płowa). Wyniki ponad 20-letnich doświadczeń polowych na glebie rdzawej potwierdziły korzystne, długotrwałe oddziaływanie węgla brunatnego na właściwości gleby oraz na stan materii organicznej z tego źródła.
EN
Soil is non-renewable and a very complex natural resource which performs many vital functions: food (99%) and other biomass production, storage, filtration and transformation of many substances including water, carbon, nitrogen. Soil as a top layer of the earth's crust is the first receiver of anthropogenic contaminants, and may or may not serve as a natural barrier to protect groundwater against contamination from the surface. One of the most important indicators of soil quality is soil organic matter (SOM), which is an important building block for the soil structure, formation of stable aggregates, and is able to improve the infiltration rates and the storage capacity of water. SOM presents a major pool carbon in the biosphere and can act both as a source and sink for carbon dioxide and other greenhouse gases. Agricultural intensification and cultivation in general results in a serious decrease in SOM as compared to that in the natural vegetation. Presently, the protection of SOM is one of the main tasks in EU, because SOM in addition to its soil fertilizing function can act in the elimination of the soil contamination and carbon sequestration. In this context, humic substances (especially humic and fulvic acids) and cohesive fractions (clay, silt, silt clay, etc.) present in soil are favourable components. It is because of their high sorption capacity with respect to many contaminants, including heavy metals, which may results in their immobilisation and, consequently protect groundwater against contamination. Antropogenically transformed soils often do not contain humic substances (HS), thus their role as a natural barrier is decreased. Therefore, re-generation of HS through humification of organic matter from diverse sources added to soils, may be the way to re-built the protective character of soil barrier, and consequently to reduce environmental and/or health risks at areas under anthropopression. Transformation processes of brown coal applied to soil were described to evaluate the use of this material as an effective source of organic matter and HS generation in degraded soils. The goal of this study was to discuss fine brown coal derived preparation as effective sources of organic matter (and humic substances) especially in soils that are anthropogenically transformed. The research concerned the analysis of properties of HS as well as formations of humic acids (HAs) in soils after addition brown coal. Soil materials used in the research was collected from the long term field experiments and microplots, as the source of organic matter the Rekulter that is based (85%) on brown coal (soft smudge type) obtained from the Konin Basin deposits preparation was used. For qualitative characteristic of SOM, particularly, in HAs, modern analytical technique such as fluorescence intensity (FI) for 3-D EEM spectra was used. The lowest fluorescence intensity (FI) for 3-D EEM spectra were observed in the case of HAs extracted from rusty soil. The 20-years research results carried out on rusty soil (sandy) confirmed long-term effect of brown coal on soil properties as well as on organic matter that originated from this source.
Rocznik
Strony
197--208
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Politechnika Warszawska, Katedra Gospodarki Przestrzennej i Nauk o Środowisku Przyrodniczym, pl. Politechniki 1, 00-661 Warszawa
Bibliografia
  • [1] Gonet S.S., Ochrona zasobów materii organicznej gleb, [w:] Rola materii organicznej w środowisku, red. S.S. Gonet, M. Markiewicz, PTSH, Wrocław 2007, 7-29.
  • [2] Zouboulis A.I., Wu Jun, Katsoyiannis I.A., Removal of humic acids by flotation, Colloids & Surfaces. Part A': Physico-chemical & Engineering Aspects 2003, 231, 181-193.
  • [3] COM (2006) 232, final. Brussels. Directive of the European Parliament and of the Council, establishing a framework for the protection of soil and amending Directive 2004/35/EC.
  • [4] COM (2002) 179, final. Brussels. Communication for the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions - Towards a Thematic Strategy for Soil Protection.
  • [5] Lal R., Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosysytems 70, Kluwer Academic Publishers, Netherlands 2004, 103-116.
  • [6] Stevenson F.J., Humus Chemistry, Wiley, Chichester 1994.
  • [7] Saiz-Jimenez C., Applications of pyrolysis-gas chromatography/mass spectrometry to the study of humic substances: evidence of aliphatic biopolymers in sedimentary and terrestrial humic acids, The Science of the Total Environment 1992, 117/118, 13-25.
  • [8] Engebretson R.R., von Wandruszka R., Microorganisms in dissolved humic acids, Environ. Sci. Technol. 1994, 28(11), 1934-1941.
  • [9] Senesi N., Molecular and quantitative aspects of chemistry of fulvic acids and its interactions with metal ions and organic chemicals Part 2, The fluorescence spectroscopy approach, Anal. Chim. Acta 1990, 232, 77-106.
  • [10] Amano H., Watanabe M., Onuma Y., Ueno T., Matsunaga T., Kuchma N.D., Speciation of Cs, Sr and transuranic elements in natural organic substances of surface soil layers, Proc. The role of humic substances in the ecosystems and in environmental protection, PTSH - Polish Society of Humic Substances, Wrocław 1997, 709-71.
  • [11] Lassen P., Carlsen L., Interactions between humic substances and polycyclic aromatic hydrocarbons, Proc. The role of humic substances in the ecosystems and in environmental protection, PTSH - Polish Society of Humic Substances, Wrocław 1997, 703-708.
  • [12] Kwiatkowska J., Ocena możliwości wykorzystania węgla brunatnego jako efektywnego źródła materii organicznej w gruntach przekształconych antropogenicznie, Inżynieria i Ochrona Środowiska 2007, 10(1), 71-85.
  • [13] Gonet S.S., Problemy ochrony zasobów materii organicznej gleb - uwarunkowania i rekomendacje, [w:] Metody badań substancji humusowych ekosystemów wodnych i lądowych, red. D. Gołębiowska, Wyd. AR w Szczecinie, Szczecin 2004, 7-14.
  • [14] Cavani L., Ciavatta C., Gessa C., Identification of organic matter from peat, leonardite and lignite fertilizers using humification prameters and electrofocusing, Bioresource Technology 2003, 86, 45-52.
  • [15] Kalembasa D., Charakterystyka wermikompostów i ich przemiany w utworach piaszczystych, Rozprawy 59, Wyd. AP, Siedlce 2000.
  • [16] Kalembasa S., Tengler S., Rola węgla brunatnego w nawożeniu i ochronie środowiska, Monografie nr 52, Wyd. AP, Siedlce 2004, 136.
  • [17] Lekan S., Wpływ dużych dawek torfu i miału węgla brunatnego na właściwości gleb piaskowych i plonowanie roślin, R (259), IUNG, Puławy 1989.
  • [18] Maciejewska A., Kwiatkowska J., Wpływ nawozu otrzymanego z węgla brunatnego na właściwości fizykochemiczne gleby, Zesz. Probl. Post. Nauk Roln. 1998, 455, 9-16.
  • [19] Maciejewska A., Kwiatkowska J., Using of brown coal to enriching content of organic matter in soil, Third International Congress of the Europen Society for Soil Conservation, Valencia, Spain, 2000, 248.
  • [20] Maciejewska A., Kwiatkowska J., Niektóre właściwości chemiczne gleby oraz jej zdolności buforowe po zastosowaniu nawozu organiczno-mineralnego z węgla brunatnego, Zesz. Probl. Post. Nauk Roln. 2002, 482, 351-357.
  • [21] Maciejewska A., Kwiatkowska J., Properties of brown coal and its usability for improvement of soil structure, Humic Substances in Ecosystems 2005, 6, 115-117.
  • [22] Twarczyński C., Wpływ nawożenia odpadami węgla brunatnego na właściwości fizyczne, fizykochemiczne i chemiczne gleby, Zesz. Nauk. AR w Szczecinie 2000, 211(84), 499-503.
  • [23] Dziadowiec H., Gonet S.S., Przewodnik metodyczny do badań materii organicznej gleb, PTG, Warszawa 1999.
  • [24] Gołębiowska D., Milczarek I., Puzyna W., Szczodrowska B., Zastosowanie fluorescencji do badania zmian zachodzących w substancjach humusowych gleb uprawnych żyta, Zesz. Nauk. AR w Szczecinie 1988, 134, 71-82.
  • [25] Sierra M.M.D., Giovanela M., Parlante E., Soriano-sierra E.J., Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques, Chemosphere 2005, 58, 715-733.
  • [26] Baker A., Fluorescence properties of some farm wastes: implications for water quality monitoring, Water Research 2002, 36, 189-195.
  • [27] Matthews B.J.H., Jones A.C., Theodorou N.K., Tudhope A.W., Exitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs, Mar. Chem. 1996, 55, 317-332.
  • [28] Miano T.M., Senesi N., Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry, Sci. Total Environ. 1992, 118, 41-51.
  • [29] McKnight D.M., Boyer E.W., Westerhoff P.K., Doran P.T., Kulbe T., Anderson D.T., Spectrofluorometric chracterization of dissolved organic matter for indication of precursor organic materiale and aromacity, Limnol. Oceanography 2001, 46, 38-48.
  • [30] Paullin M.J., Cabaniss S.E., Rank analysis of the pH-dependent synchronous fluorescence spectra of six standard humic substances, Environ. Sci. Technol. 1995, 29, 1460-1467.
  • [31] Rivero C., Senesi N., Paolini J., D'Orazio V., Characteristics of humic acids of some Venezuelan soils, Geoderma 1998, 81, 227-239.
  • [32] Senesi N., Miano T.M., Provenzano M.R., Brunetti G., Spectroscopic and Comparative Characterisation of I.H.S.S., Reference and Standard Fulvic and Humic Acids of Various Origin. Science of the Total Environment STENDL 1989, 81/82, 143-156.
  • [33] Antunes M.C.G., da Silva J.C.G.E., Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances, Analytica Chimica Acta 2005, 546, 52-59.
  • [34] Provenzano M.R., D'Orazio V., Jerzykiewicz M., Senesi N., Fluorescence behavior of Zn and Ni complexes of humic acids from different sources, Chemosphere 2004, 55, 885-892.
  • [35] Plaza C., Brunetti G., Senesi N., Fluorescence characterization of metal ion-humic acid interactions in soils amended with composted municipal solid waste, Anal. Bioanal. Chem. 2006, 386, 2133-2140.
  • [36] Cory R.M., McKnight D.M., Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced qouinones in dissolved organic matter, Environ Sci. Technol. 2005, 39, 8142-8149.
  • [37] Senesi N., Miano T.M., Provenzano M.R., Brunetti G., Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy, Soil Science 1991, 152(4), 259-271.
  • [38] Kwiatkowska J., Provenzano M.R., Senesi N., Long term effects of brown coal-based amendment on the properties of soil humic acids, Geoderma 2008, 148, 200-205.
  • [39] Romero E., Plaza C., Senesi N., Nogales R., Polo A., Humic-like fractions in raw and distillery wastes, Geoderma 2007, 139, 397-406.
  • [40] Bertoncini E.I., D'Orazio V., Senesi N., Mattiazzo M.E., Fluorescence analysis of humic and fulvic acids from two Brazilian oxisols as affected by biosolid amendment, Anal. Bioanal. Chem. 2005, 381, 1281-1288.
  • [41] Cocozza C., D'Orazio V., Miano T.M., Shotyk W., Characterization of soild and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties, Org. Geochem. 2003, 34, 49-60.
  • [42] Moped J.J., Hemmingsen S.L., Autry J.L., McGown L.B., Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction, Environ. Sci. Technol. 1996, 30, 3061-3065.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0032-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.