PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reaction-diffusion problems with Random parameters using the generalized stochastic finite difference method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main idea here is to demonstrate the new stochastic discrete computational approach consisting of the generalized stochastic perturbation technique based on the Taylor expansions of the random variables and, at the same time, classical Finite Difference Method on the regular grids. As it is documented by the computational illustrations, it is possible to determine using this approach also higher probabilistic moments and to provide full hybrid analytical-discrete analysis for any random dispersion of input variables unlike in the second order second moment technique worked out before. A numerical algorithm is implemented here using the straightforward partial differentiation of the reaction-diffusion equation with respect to the random input quantity; all symbolic computations of probabilistic moments and characteristics are completed by the computer algebra system MAPLE.
Rocznik
Strony
31--45
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Technical University of Łódź, Faculty of Civil Engineering, Architecture and Environmental Engineering, Al. Politechniki 6, 90-924 Łódź, Poland, Marcin.Kaminski@p.lodz.pl
Bibliografia
  • [1] Collatz, L., Numerical Methods for Partial Differential Equations, Polish Sci. Publ., 1960, (in Polish).
  • [2] Wasow, W. and Forsythe, G., Finite Difference Methods for Partial Differential Equations, Wiley & Sons, 1959.
  • [3] Minkowycz, W. e. a., Handbook of Numerical Heat Transfer, Wiley-Interscience, 1988.
  • [4] Taflove, A., Advances in Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, 1998.
  • [5] Kamiński, M., Stochastic perturbation approach in vibration analysis using finite difference method, J. Sound Vibr., Vol. 251, 2001, pp. 651-670.
  • [6] Kamiński, M., Generalized perturbation-based stochastic finite element method in elastostatics, Comput. & Struct., Vol. 85, 2007, pp. 586-594.
  • [7] Schnakenberg, J., A reaction-diffusion-problem in the biophysics of photoreceptors, Zeitschrift für Physik B Cond. Matter, Vol. 68, 1987, pp. 271-277.
  • [8] Kunert, G., A posteriori H1 error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes, IMA Journal Num. Anal., Vol. 25, 2005, pp. 408-428.
  • [9] Hurtado, J. and Barbat, A., Monte-Carlo techniques in computational stochastic mechanics, Arch. Comput. Meth. Engrg., Vol. 5, 1998, pp. 3-30.
  • [10] Ghanem, R. and Spanos, P., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.
  • [11] Sureshkumar, R., Introduction to Computer Methods, 1997.
  • [12] Kleiber, M. and Hien, T., The Stochastic Finite Element Method,Wiley, 1992.
  • [13] Yeh, C., A singularly perturbed reaction-diffusion problem with inhomogeneous environment, J. Comput. Appl. Math., Vol. 166, 2004, pp. 321-341.
  • [14] Clavero, C., Gracia, J. L., and O'Riordan, E., A parameter robust numerical method for a two-dimensional reaction-diffusion problems, Math. Comput., Vol. 74, 2006, pp. 1743-1758.
  • [15] Liszka, T. and Orkisz, J., The finite difference method at arbitrary irregular grids and its applications in applied mechanics, Comput. & Struct., Vol. 11, 1980, pp. 83-95.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0029-0075
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.