
Adaptive Partition-Based Logic Simulation

Using GPGPU
Meng Zhang, Member, IEEE, Yuxuan Zhang, Wei Yang, Yaowen Kai, Tingcun Wei, and Xiaoya Fan

Abstract—With the improvement of the gate complexity, the
verification overhead becomes more decisive for VLSI design
cost. In order to reduce the simulation time, a adaptive partition
based parallel method of VLSI logic simulation with GPGPU
is addressed in this paper. The numerous arithmetic blocks of
GPGPU is utilized simultaneously for disparate circuit macros.
The partition strategy we proposed shows a sufficient flexibility
to balance the different work load in parallel threads and fit
the feature of GPU architecture. To explore the parallelism
and locality of logic simulation further, the circuit macro is
organized as stream data. The data dependency between the input
and output nets in one individual logical path is handled with
the shared memory of GPGPU. As for different logical paths,
the dependency is processed by threads synchronization. To
illustrate the performance, a serial experiments is implemented
in Intel CoreDuo workstation with Nvidia GTX465 GPU board.
Four typical digital circuits (LDPC, DES3, OpenRISC 1200
and OpenSPARCPARC T1) are considered as the benchmark.
The result of experiments demonstrate a significant speed-up is
achieved by using GPGPU parallel method, comparing with the
CPU serial logic simulation. In maximal case (OpenS T1), the
GPGPU parallel acceleration computes 21 times faster than serial
program.

Index Terms—Logic Simulation, Stream Computing, GPGPU,
CUDA, EDA

I. INTRODUCTION

IN the past years, logic simulation has greatly promoted

the development of circuit designing, especially in modern

ASIC and FPGA designs with millions of gates. It verifies the

correctness of circuit designs in the early phase of designing.

The logic simulation is usually a process of software program

with intensive computation, and much time consuming. With

the improvement of sophisticated VLSI designing and manu-

facturing, efficient simulation solution is required urgently. A

series of researches and works had been done to accelerate the

logic simulation in recent decades.

Conventional accelerating solution of logic simulation is

based on parallel computing platforms, by means of shared-

memory systems or distributed systems. Simulation on shared-

memory systems like multiprocessors benefits from light-

weighted parallelism and communication [1], [2]. Parallel so-

lutions on distributed systems achieve the acceleration by mul-

tiple threads and processes executing on distributed-memory

computer or workstation clusters [3], [4]. There are also some

special purpose simulators, speeding up the simulation with

an array of special-purpose processors [5].

Meng Zhang, Yuxuan Zhang, Wei Yang, Yaowen Kai, Tingcun Wei and Xi-
aoya Fan are with School of Computer Science and Engineering, Northwestern
Polytechnical University, Xi’an, P.R.China (e-mail: zhangm@nwpu.edu.cn).

The research in [6] listed a series of aspects mostly influence

the performance of parallel simulation including circuit struc-

ture, target architecture and partition. Among these aspects,

the crucial problem is the strategy of partitioning and mapping,

which generate separate simulation units to match the target

computing architecture. A great deal of effort has dedicated

in partition methods include cones [6] and clusters [3]. There

are also optimization methods for partitioning with heuristic

algorithms [7], [8]. However, the survey generalized that

simulation performance varies dramatically from one circuit

to the other due to the difference between circuits structures

[9].

Recently, along with the mature of GPGPU (General Pur-

pose Graphic Processing Unit) technology, with numerous

arithmetic units integrated on single chip, low-cost high per-

formance parallel solution for scientific computing become

possible. Researchers tend to explore the potential of GPU

for circuits simulation [10]–[13]. The first GPU based logic

simulation was presented in [10], however the simulation

performance was reduced by the barrier of data transfer

between host memory and GPU off chip memory, which

the result was even much lower than CPU serial program.

While, later works including the cluster [11] and cone [13]

both promoted the simulation on GPU. And an event-driven

simulator in [12] showed a considerable performance, with

macro-gate partitioning in average layers. However, previous

partition algorithms ignored the limitation of GPU platform,

effective utilization of on-chip resources and inherently struc-

tural feature of circuit designs. Therefore, performance of logic

simulation on GPU is still expected to be improved.

The rest of this paper is organized as follow. Some essential

information about GPU architecture and CUDA, which we

used to completed acceleration in this paper, is introduced in

Section II. In Section III, We describe the simulation model

and parallel method with GPU. In order to take full advantage

of parallel resources in GPU, an adaptable partition strategy is

presented in Section IV. Section V presents experiments which

demonstrates the significant speedup of simulation. Finally the

conclusion is drawn in Section VI.

Nvidia GPU integrates hundreds of cores on single chip, and

supplies parallel programming models. Fig.1 shows the CUDA

architecture. The basic execution units are organized as SPs

(Stream Processor). Each SM (Stream Multiprocessor) consists

of several SPs. Nvidias CUDA [14] (Computing Unified

Device Architecture) is the hardware and software architecture

that enables general purpose programming on GPU. CUDA

organizes the parallel programming with hierarchies of threads

and memories. In the threads hierarchy model, threads are

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ���

defined as the finest dispatch units on SPs; each block consists

of a batch of threads, corresponding to a SM block. Parallel

programs are executed in SIMT (Single Instruction Multiple

Thread) mode. The memory hierarchy model contains register,

shared memory and global memory, and maps the former two

to the on-chip memory and the later one to off-chip memory.

Fig. 1. CUDA Programming Model

The combinational logical part of a sequential circuit is ex-

tracted through ranking and partitioning. Finally it is mapped

to computing resources. In the simulation phase, separate

partitions are dispatched as tasks to the multiprocessors of

GPU. We proposed the adaptable partition strategy targets the

GPU platform, which is flexible and efficient. In this strategy,

a variable partition of circuit design is instructed by related

factors. These factors involved several crucial indicators of

partitioning and mapping, including the capacity of a partition

unit, the memory limitation of computing platform and the

overlap rate indicator of partitioning. We also analyse and

optimize these factors by a series experiments. Parallel logic

simulation with adaptable strategy achieved considerable per-

formance on Nvidia Geforce GTX465.

The rest of this paper is organized as follow. In Section II,

We describe the simulation model and parallel method with

GPU. As a parallel computing platform, GPU is of the archi-

tecture specified. CUDA GPU has a stream computing liked

programming model. Some essential consideration for parallel

logic simulation to fit the hardware features is presented in

section III. In order to take full advantage of parallel resources

in GPU, an adaptable partition strategy is presented in Section

IV. Section V presents experiments which demonstrate the

significant speedup of simulation. Finally the conclusion is

drawn in Section VI.

II. THE SIMULATION FRAMEWORK

Modern GPU provides a numerous of arithmetic cores, and

supports abstract programming model to utilize these resources

for general purpose computing. In this section, we analyzed

the programming model of GPU, the common procedure of

logic simulation, and the parallel simulation model on GPU.

A. Basic Simulation Model

Firstly the gate-level netlist of digital circuit design is

generated by a commercial synthesis tool. Secondly, the pre-

processing routines start to compile the netlist, ranking and

partitioning the circuit design to match the GPU platform.

Finally, structured data of the simulation object is transfer

to the off-chip memory of GPU. The simulation program

is driven by inputs stimulus and exports simulation outputs

iteratively.

The synthesis library in our simulation experiment is a

reduced subset of a standard library, including typical dual-

input gates, and D flip-flop.

B. Parallel Programming Methodology

The parallel programming always adopts four steps to orga-

nize the computation: Partitioning, communication, agglomer-

ation and mapping [16]. As for the method we proposed,the

circuit information from the target netlist is extracted and

the whole circuit is partitioned into basic element as much

as possible firstly. According to the partition information,

massive parallel threads are generated. For GTX465 GPU, we

allocate at least 128 threads in one SM block. The logical gate

is divided to individual thread with its correlation between

input and output. However, this correlation is intrinsic feature

of circuit topology. The thread executes independently in a

period in which the correlation only involves with those logical

gate allocated in one SM block. The communication between

different SM block is triggered at a unified synchronisation

time to insure the threads process do not disturbed by a high

latency memory accessing. The logical gates in one logical

path which is chained without branches are agglomerated to

one thread. With this mapping strategy, one logical path is

broke at the logical branch point by threads synchronizing.

Therefore, the thread can execute without disturbation by

correlative data accessing.

C. Parallel Simulation with CUDA

To explore the parallelism and capture the data locality,

we adopt macros [11] as coarse-grain tasks, partitioned from

combinational logical. They are generated by propagation of

connected gates in rank order. Each macro can be seen as

a small combinational logic unit, in which the gates are

connected with local nets. Between macros, there are global

nets connected for data communication. Fig.2 shows the macro

partition of a circuit design.

Fig. 2. Partitioning of Macros

To match the hierarchies of threads and memories in CUDA

programming model, macros are scheduled and executed on

��� ����� �� ��� �������� ���������!"���� 	���� ��
�	����� ����� �����

blocks, with internal gates naturally mapped to threads in a

block as fine-grain tasks, and local signals captured by on-chip

shared memory. Gates are evaluated individually by threads

according to LUT (Look-Up Table) of truth-tables.

Fig. 3 shows the parallel simulation with macro partitioning.

Each macro is an individual driven object. In oblivious mode,

macros are always reevaluated, while in the event-driven

simulation mode, a macro is reevaluated only when it is

stimulated.

Fig. 3. Parallel Simulation Model with CUDA

The related data are organized as follow: gates and macros

are mapped to the global memory; Look-up table is mapped

to shared memory for high speed access; Nets are mapped to

shared memory and global memory separately based on their

property. Texture binding does not perform well to cache data,

even worse, so we prefer to optimize the coalesced access

of global memory. We also rearrange and reorganization the

data to optimize both on-chip and out-chip memory access.

The detailed optimization will be described in next section. In

addition, global block synchronization [15] is adopted in the

simulation to accomplish blocks synchronization in kernels.

III. STREAM ORGANIZATION

CUDA is a kind of typical program model for stream com-

puting [14]. The parallelism of stream computing is denoted

in three levels.

• Data Level in which the parallel computing is the most

fine gain. Eg. a set of instructions in a loop executes

repeatedly.

• Kernel Level in which the different threads run simul-

taneously. As for GPGPU, plenty of threads can be

executed in a CUDA SM block at the same time, even

though the number of threads exceeds execution units’.

The Local register file in a SM block is used to store the

context to support threads switch with low latency.

• Task Level in which the disparate algorithmic tasks can

be proceed simultaneously. The individual memory space

is located for each task proceed in this level. Task parallel

is still not involved with the GPU hardware.

We optimized threads and data organization with the for-

mer two features which are performed in one CUDA SM

block. In one macro, the logic gate is arrayed with different

SYNCBLOCK as Fig. 3. Each thread in the block process

one logical path. According to the partition strategy which

is described in next section, the logic result of gates in

one SYNCBLOCK level are independent with each other

although those in different SYNCBLOCK levels are always

correlative. Then these threads should be synchronized at every

SYNCBLOCK.

The inputs and outputs value is a intermediate result for

every gate logical simulation. A LNVT (Local Nets Value

Table) is used to store this intermediate data, which LNVT is

arrangement with the Netlist relationship index. For example,

in Fig. 4, a AND gate is evaluated. The value of Input0 and

Input1 is found in LNVT with index 11 and 12, which is store

as the outputs of last level simulation. The index of logical

simulation LUT is composed of these two input values and

logical type AND. The result from LUT is stored as output in

LNVT with index 45. In an SM block, A thread is allocated

to one gate simulate.

Fig. 4. Logical Simulation for a Gate

Since the CUDA GPU has a hierarchy memory scheme and

provides a private low latency shared memory for every SM

block, the efficient of parallel logical simulation is depended

on the data locality in shared memory. In CUDA GPU,

constant value can be stored in a cacheble constant memory.

Only when all threads access the same unit, the large latency

of off-chip memory access can be hidden. However LUT

is indexed and accessed randomly by threads. The constant

memory will lose the low latency, if LUT is mapped to them.

Therefore LUT is loaded to shared memory when every kernel

initials. Due to the similar accessing property, we also allocate

a individual space in shared memory for LNVT. Obviously the

amount of whole netlist is much large than shared memory. It

is more convenient that the scale of netlist in shared memory

is shrunk to macro level. The LNVT is constructed with a

circuit macro netlist.

According to our simulation platform, logic gate calculating

inside the macro is mapped to thread. The LNVT is composed

of the intermediate values (I, 0, x, z) produced and consumed

by the logic gate computing. The constant input can be handled

with the different procedure that the constant value is decided

by netlist information without searching LNVT. A sample

solution is to locate the constant value by program branch.

However every branch in a GPGPU warp is processed serially

which will slow down the performance. An alternative method

is proposed in this paper, which the constant values is stored

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��#

at the end of LNVT and can be found at the LNVT as

well instead of processing branches. With this method, the

logic simulation is mapped in a unified mode which the wire

intermediate values and the constants are both stored in shared

memory.

IV. ADAPTABLE PARTITION STRATEGY

To achieve acceleration of simulation on GPUs, the chal-

lenges are exploring parallelism of tasks and locality of data.

We analyze the structural character of circuit design and the

feature of GPU platform, to design an adaptable partition

strategy for promoting the efficiency of logic simulation.

A. Statistics and Analysis

As mentioned above, partitioning is based on the ranking

of circuit design in the first step. Actually, ranks also imply

the critical route of the design. While, the distribution of

elements always tend to accumulate in several ranks, which

is largely determined by the structural characteristic of circuit

design. As an example, Fig. 5a shows the ranking statistics of

OpenSPARC T1 [17]. The distribution situation of nets and

gates are shown in Fig. 5a and Fig. 5b respectively, rank with

ALAP (As Late As Possible). The result confirmed that most

nets and gates are gathered in some intensive ranks nearby the

outputs of the combinational logic part.

(a) Nets Distribution (b) Gates Distribution

Fig. 5. Statistic of the Ranking

B. Optimization on Partitions

The challenges to explore simulation performance on

CUDA can be attributed as:

• load balance between simulation tasks;

• opportune utilization of limited on-chip resources;

• efficient data communication, and synchronization of

parallel simulation tasks.

Previous works partition macro in average-height layers,

which separated ranks into equal-height layers. As the dis-

tribution of elements in ranks, macros were also scattered

intensively in some of these layers, and sparsely in the retired

layers. In such cases, the partitioning result could not map the

target architecture perfectly. Most of those blocks are merely

idle to wait for synchronization in cycles as in Fig. 6a. It

wastes the computing resources and limits the performance.

Although the frequency of elements in ranks reflects the

circuits structure, it is complex and unreliable to model the

(a) Average Partition

(b) Variable Partition

Fig. 6. Illustration of Partition

partition of ranks with statistic information directly. And

optimization on ranking method is difficult when the size of

circuit is large. To achieve variable partition as in Fig. 6b, we

introduce an adaptable partition strategy.

C. Adaptable Partition Strategy

The adaptable partition strategy targets on constructing

opportune simulation partitioning to inspire the computing

potential of the platform. It is a dynamical partitioning process

with probed adjustment instructed by constraints, to optimize

the partitioning in the following aspects:

1) Load Balance: Unbalanced partitions form a critical

path of the parallel processing, which limit the efficiency and

performance. To achieve global load balance between parallel

tasks, we introduce the parameter C, represents the appointed

capacity of each macro, as a slack parameter to instruct the

generation of a macro. In the partitioning of each macro, the

amount of gates inside is expected approach to the capacity,

by adjusting the top of this macro gradually. The capacity

should be selected prudently considering the balance between

the computation ability of a single SM on GPU and the cost

of data communication and synchronization.

2) Platform Limitation: In a macro, the simulation signals

of internal gates are attached on connected local nets. And as

an extreme situation determined by the connection of gates in

ranks, exponential explosion of nets might occur in a macro

with a certain probability. So this is the premier premise that,

the amount of nets in each macro should be restricted by a

threshold quantity T, to ensure that 1) on-chip shared memory

could able to accommodate all the local nets; 2) the size of

shared-memory is enough for switches between blocks in a

SM to hide long latency operations.

��� ����� �� ��� �������� ���������!"���� 	���� ��
�	����� ����� �����

3) Overlap Rate: As traditional partition and simulation

algorithms, to reduce data communication in parallel tasks, a

gate might be overlapped among different related macros. To

promote parallelism in such decoupling method, the price is

the increment of redundant computing load. And with the rise

of overlap rate, the redundant computing load finally hamper

the overall performance.

Meanwhile, the overlap rate is also a phenomenon reflects

the partitioning. With the impaction of the factor C and L

we discussed above, the overlap rate in a layer is in direct

proportion to the height of this layer. For example, a small

value for height leads to fat macros partitioned in the layer.

However, with the growth of height, the algorithm shrinks the

tops of macros. As a result, macros tend to narrow tops even

degrade to cones, with a sharply increment of the quantity and

the overlap in this crowed layer.

If the overlap rate is lower than a given threshold, the

performance will benefit from it throughout. Therefore, we

introduce the threshold R, represents an acceptable upper

bound of overlap rate of the partition in a layer, to control the

partitioning, and also to prevent the degradation of partitioning

from macros to cones. In this strategy, we attempt to search

the optimal point of overlap rate for the tradeoff between

parallelism and the redundant load.

4) Patition Algorithm: The partition algorithm separates

ranks into layers from rank 0 to the last rank successively.

When the algorithm turns to generate a new layer, the height

of this layer is initialized maximally, that is, the probe attempts

a maximum height primarily. Then, by continuous adjustment

and probing, the height decreasingly approach to the opti-

mization. The probing and partitioning is guided by following

constraints:

• The amount of gates in each macro should approach the

appointed quantity C, for load balance.

• The amount of nets in each macro should be lower than

the value of threshold T, considering the limitation of

platform.

• The overlap rate of partitioning in a layer should be

lower than threshold R, to achieve the optimization of

performance.

If the layer could not content all of the constraints, the

height chosen for this layer will be decrease, then, the probing

continues. Once all of the constraints are contented, the layer

and macros partitioned are confirmed. Then, the algorithm

turns to generate the next layer, until all ranks are separated

in layers. Fig. 7 shows the algorithm flow.

The algorithm instructed by these constraints, to partition

the circuit design based on its structural character and plat-

forms limitation, for inspiring the performance of simulation

on GPU.

V. EXPERIMENTAL RESULTS

In this section, we introduce our experimental method.

Then, we analyze and optimized the factors of adaptable

strategy by a series experiments. Finally, the parallel solution

on GPU is implemented and evaluated.

Fig. 7. Adaptable Partition Algorithm Flow

TABLE I
PARAMETERS OF EXPERIMENTAL PLATFORM

Proc. Type Frequency Memory Description

CPU
Intel Core

T2400
1.83GHz

DDR2

2GB

Dual

Cores

GPU
NVIDIA

GTX 465
1.20GHz

GDDR5

1GB

11 SMs,

32 SPs/SM

A. Experimental Platform

The simulation experiments, including the optimization and

the parallel solution, have been conducted on Nvidia Geforce

GTX 465. And the serial simulation is tested on an Intel Core

Duo T2400 as a comparison. The specification of the experi-

mental platform is shown in Table I. The experiments involved

on a variety of circuit designs from purely combinational logic

like LDPC, complicated sequential logic like DES, to proces-

sors as OpenRISC 1200 and OpenSPARC T1 [17], [18]. The

synthesis result of these designs is shown in Table II In order

TABLE II
SYNTHESIS INFORMATION OF CIRCUITS

Circuits Nets Gates DFFs

LDPC 62475 60752 0

DES3 86254 52372 6984

OpenRISC l200 28297 25924 1891

OpenSPARC T1 223864 189587 28376

to simplify the simulation, several essential modification on the

circuits under-tested. Additionally, since the memory module

simulation is exhausted and worthless for the data path circuit

logic verification, which is always simulated individually, the

memory modules is removed from the RTL (Register Transfer

Level) designs to avoid the synthesis and simulation of RAM

instead of extracting RAM interfaces on top module. The

testbench which is coded in Verilog language is dumped from

the commercial simulator (Synopsys VCS 7.1.2). The dumped

testbench file is transformed to binary file as the input data

of the GPU simulation experiment. Simulating inputs in our

experiments were generated based on main clock frequency.

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��$

The cycle accurate simulation is implemented in our platform.

The information of testbench for these circuit designs is shown

in Table III. The simulation cycles of later two testbenches

depend on the executable programs respectively. The numbers

of simulation cycles are different, however the simulation time

consumed does not dependent on the input size completely

because the logical paths of each are actually quite distinct.

TABLE III
TESTBENCH INFORMATION

Circuits Testbench Type Simulation Cycles

LDPC Random 25001

DES3 Random 205002

OpenRISC OpenRISC Program Testbench 150012

OpenSparc OpenSparc Program Testbench 41052

B. Optimization

The selection of value for the partition factors has an

important impact on the performance. They are also influenced

with each other in the partitioning. We design the experiments

to select the optimal group of values for these parameters, by

evaluating the performance of simulation with corresponding

adaptable partitioning.

Firstly, threshold L in the experiment is naturally selected

as multiple lower than the shared-memory limitation.

Secondly, we designed the experiment to search the optimal

value for R in a successive interval. The value for parameter C

was set 800 in this experiment. The statistic of operating time

is shown in Fig. 8. Experimental result shows in the interval

between (0.2, 0.5), the partition for simulation could achieve

stable and efficient performance.

Fig. 8. Simulation Performance Influenced by Parameter R

Thirdly, we also cared about the selection of C by testing

the performance of simulation partitioned with a series value

for macros capacity C, with 0.2 set for R. The result in

Fig. 9 manifest that the performance of parallel simulation is

inversely proportional to the value select for C. When set 800

for C, the parallel simulation achieved the minimal operation

time. It demonstrated the importance of data locality contribute

to the overall performance. However, with the growth of C,

the practical capacity of macros is restricted by other factors

like parameter L, and the parameter C loses control of the

Fig. 9. Simulation Performance Influenced by Parameter C

partitioning. Therefore, the operation time of simulation tends

to plane gradually as shown in this chart.

The optimized partition result is shown in Fig. 10, with 0.2

for R and 800 for C. The experimental result indicated that,

the adaptable partition strategy is flexible to respond different

circuit designs and structure diversity between these circuit

designs. Meanwhile, it has advantages in efficient utilization

of computing resources, and also in saving expensive com-

munication and synchronization between blocks map to the

CUDA platform.

(a) LDPC

(b) OpenRISC1200

(c) OpenSparcT1

Fig. 10. Variable Partition Results

C. Performance

The parallel solution with adaptable partition strategy has

been implemented and tested. The performance of parallel

simulation on GPU is compared with corresponding serial

��% ����� �� ��� �������� ���������!"���� 	���� ��
�	����� ����� �����

simulation on CPU. The experimental results of oblivious and

event-driven simulation are illustrated in Fig.11.

Fig. 11. Simulation Performance

A significant speed-up of the parallel simulation on GPU

comparing with serial simulation is shown in Table IV. The

parallel event-driven simulation, benefited from acceleration

with GPU, performed the fastest execution speed. While,

oblivious simulation generally achieved a better acceleration.

The major aspect affects the simulation acceleration is the

structure of circuit designs. A regular layout, with balanced

distribution of ranks and elements, leads to balanced partition,

which is critical for parallel simulation. Therefore, some of

these simulations have stable performance, like LDPC. And

although in the similar design type as OpenRISC1200 and

OpenSparc T1, the performances can be categorically different

from each other.

TABLE IV
SIMULATION SPEED-UP

Circuits Oblivious Speed-up Event-Driven Speed-up

LDPC 9.032 8.985

DES3 18.447 7.876

Orl200 3.041 2.480

OpenSparc T1 21.382 9.686

D. Data Locality Analysis

Since the memory of GPGPU is organized with a kind

of hierarchical model, the data locality should be taken full

advantage of to acquire high simulation performance. In order

to monitor the locality of the GPU simulation program, we

evaluate our simulation program with Compute Visual Profiler

provided by Nvidia. The kernel run time and the off chip

memory accessing time of OpenRISC and Opensparc are

visualized as Fig.12. The report of Profiler demonstrates that:

• For OpenRISC1200, kernel time is 97.84% of GPU time,

global memory copy time is 0.20%;

• For OpenSparcT1, kernel time is 95.33% of total GPU

time, global memory copy time is 4.06%.

In this visualized result, there is no time overlap between

memory accessing and kernels on GPU for each simulation

experiment. Fig.12 also illustrate the global memory copy time

is much less than kernel run time, which indicates that the

kernel achieves a high utilization factor of the shared memory

and L2 cache as expected so that it does not need to access

the global memory frequently.

Fig. 12. Execution Time Ration

VI. CONCLUSION

A parallel solution of logic simulation on GPUs is proposed

in this paper. By extracting and partitioning the combinational

logical part of the design, macros are generated as course-

grain tasks to map to the parallel platform firstly. To develop

further performance, an adaptable partition strategy is pre-

sented, which targets at the CUDA platform. In this strategy, a

variable partitioning of circuit design is controlled by related

factors. These factors are crucial indicators of partitioning and

mapping include the capacity of a partition unit, the memory

limitation of computing platform and the overlap rate indicator

of partitioning. We analysed and optimized the selection of

these factors by a series experiments. Finally, we illustrate

the strategy on the simulation of some typical circuit designs.

The experimental result indicated a considerable improvement

of performance. The parallel simulation solution by using

GPGPU achieves 21x speed-up maximally comparing with

serial simulation on CPU.

ACKNOWLEDGMENT

This research is complemented in Engineering Research

Center of Embedded System Integration, Chinese Ministry

of Education and School of Computer Science and engi-

neering, Northwestern Polytechnical University. The work is

supported by the National High-technology Research Develop-

ment Project: ”Actively Adaptable Architecture Research for

Stream Computing” (No. 2009AA01Z110). Additional support

has been provided by the Innovation Fund of Northwestern

Polytechnical University ”Parallel logic simulation based on

GPU” (No. Z2011119), and NSFC of China (No. 60773223,

No. 61003037, No. 60736012).

REFERENCES

[1] L. Soule, T. Blank, “Parallel Logic Simulation on General Purpose
Machines”, in 25th ACM/IEEE Design Automation Conference, 1988,
pp. 166–171.

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��&

[2] D. A. Reed, A. D.Malony, B. D. McCredie, “Parallel Discrete Event
Simulation Using Shared Memory”, IEEE Transactions on Software

Engineering, vol. 14, no. 4, pp. 541–553, 1987.
[3] C. Sporrer, H. Bauer, “Coralla Partitioning for Distributed Logic Simu-

lation of VLSI-Circuits”, in Proceedings of the 7th Workshop on Parallel

and Distributed Simulation, 1993, pp. 85–92.
[4] Y. Matsumoto, K. Taki, “Parallel Logic Simulation on a Distributed

Memory Machine”, in Proceedings. European Conference on Design

Automation, 1992, pp. 76–80.
[5] Y. Hur, S. A. Szygenda, “Special Purpose Array Processor for Digital

Logic Simulation”, in Proceedings of the 28th Annual Simulation

Symposium, 1994, pp. 297–302.
[6] M. L. Bailey, J. V. Briner, R. D. Chamberlain, “Parallel Logic Simulation

of VLSI Systems”, ACM Computing Surveys, vol. 26, pp. 255–294,
1994.

[7] K. Hering, G. Runger, S. Trautmann, “Modular Construction of Model
Partitioning Processes for Parallel Logic Simulation”, in International

Conference on Parallel Processing Workshops, 2001, pp. 99–105.
[8] S. Patil, P. Banerjee, C. D. Polychronopoulos, “Efficient Circuit Par-

titioning Algorithms for Parallel Logic Simulation”, in Proceedings:

Supercomputing 89, 1989, pp. 361–370.
[9] R. D. Chamberlain, “Parallel Logic Simulation of VLSI Systems”, in

Proceedings of the 32nd Design Automation Conference, 1995, pp. 139–
143.

[10] A. S. Perinkulam, “Logic Simulation Using Graphics Processors”, Ph.D.
dissertation, University of Massachusetts, 2007.

[11] D. Chatterjee, A. DeOrio, V. Bertacco, “GCS: High-Performance Gate-
Level Simulation with GP-GPUs”, in 2009 Design, Automation and Test

in Europe Conference and Exhibition, 2009, pp. 1332–1337.
[12] D. Chatterjee, A. DeOrio, V. Bertacco, “Event-Driven Gate-Level

Simulation with GP-GPUs”, in 46th ACM/IEEE Design Automation

Conference, 2009, pp. 557–562.
[13] A. Sen, B. Aksanli, M. Bozkurt, M. Mert, “Parallel Cycle Based

Logic Simulation using Graphics Processing Units”, in 9th International

Symposium on Parallel and Distributed Computing, 2010, pp. 71–78.
[14] NVIDIA, “Fermi Compute Architecture Whitepaper”, Tech. Rep., 2009.
[15] D. A. R. Polanco, “Collective Communication and Barrier Synchro-

nization on NVIDIA CUDA GPUs”, Ph.D. dissertation, University of
Kentucky, Sep. 2009.

[16] I. T. Foster, “Desinging and Building Parallel Program ”, New York,
Addison-Wesley Publishing Company, 1994.

[17] OpenSparc, “OpenSparc.” [Online]. Available: http://www.opensparc.net
[18] Opencores, “OpenCores.” [Online]. Available: http://www.opencores.org

Meng Zhang received the BSc and MSc degrees
from Northwestern Polytechnical University, Xi’an,
China, in 2001 and 2004 respectively. He received
the PhD degrees in computer science and engi-
neering from Northwestern Polytechnical University
in 2010. Since 2004, he has been on the faculty
of the School of Computer Science and Engineer-
ing, Northwestern Polytechnical University. He also
serves as an engineer in Engineering Research Cen-
ter of Embedded System Integration, Chinese Min-
istry of Education. He worked on 16 short vector

cores stream processor which was supported by Chinese National High-
technology Research Development Project. His work and research interests
are in parallel programming, multicore computer architecture.

Yuxuan Zhang received the B.S. degree in Com-
puter Science from Northwestern Polytechnical Uni-
versity, Xian, China, in 2009. He is currently a
master candidate of Computer Architecture in North-
western University. His research interests are Com-
puter Architecture, High-performance Computing,
Digital Design, and EDA technology.

Wei Yang received the BSc degree in microelec-
tronics from Northwestern Polytechnical University,
Xi’an, China in 2010. He is a master candidate
in School of Computer Science and Engineering,
Northwestern Polytechnical University. He works on
GPGPU parallel programming. His research research
interests are in parallel programming, computer ar-
chitecture.

Yaowen Kai received the B.S. degree in Computer
Science from Northwestern Polytechnical Univer-
sity, Xian, China, in 2009. He is currently a master
candidate of Computer Architecture in Northwestern
University. His research interests are Computer Ar-
chitecture, VLSI, EDA technology, Digital System
Design and Verification.

Tingcun Wei received the PhD degree from Tohoku
University, Japan, in 1999. He has been on the
faculty of the School of Computer Science and
Engineering, Northwestern Polytechnical University
since 2003. He had been with TOPPAN PRINTING
Co., Ltd., Japan for five years: he served as the
senior engineer of microelectronic circuit. He is a
reviewer of Chinese Journal of Semiconductors and
Chinese Journal of Liquid Crystals and Display,
a Special commentator of Chinese Physical Letter.
His research interests include CMOS hybrid-voltage

process, mixed-signal SoC/VLSI design methodology, Low voltage and low
power analog VLSI design, Front-end readout and signal process IC for
biomedical imaging system and Power management and digital power IC
design.

Xiaoya Fan received the PhD degree from North-
western Polytechnical University, Xi’an, China, in
1989. He has been on the faculty of the School of
Computer Science and Engineering, Northwestern
Polytechnical University since 1989, and heads its
Computer Architecture Laboratory. He is a senior
member of China Computer Federation, the mem-
ber of Computer Architecture Technical Commit-
tee, China Computer Federation. He is a reviewer
of Chinese Journal of Aeronautics and Journal of
Computer-Aided Design & Computer Graphics. He

is particularly interested in parallel and distributed architectures for informa-
tion systems, including stream based high performance computing systems,
many-cores architecture for Cloud Computing.

��' ����� �� ��� �������� ���������!"���� 	���� ��
�	����� ����� �����

�Abstract—A new method of first-, second-order and
multiparameter symbolic sensitivity determination based on the
nullor model of active devices and modified Coates flow graph is
presented. Rules for a symbolic reduction of nullor circuit
complexity are described. An algorithm performs symbolic
sensitivity analysis with respect to various circuit parameters
appeared not only at one location in the modified Coates flow
graph. Advantages of the method suggested are that, the matrix
inversion is not required and the main drawback of some
methods based on the adjoint graph, i.e. the necessity to analyze
the corresponding graph twice, is avoided. Illustrative examples
on symbolic sensitivity analysis are given.

Index Terms—analogue circuits, flow graphs, nullor model,
symbolic sensitivity analysis.

I. INTRODUCTION
ENSITIVITY analysis plays an important role in
determining the critical design variables in analog circuit

analysis and synthesis [1], [2]. Sensitivity analysis is used in a
wide range of areas such as prediction and evaluation of
change in the characteristics of a network due to the change in
the parameters, and optimization design of the network [3].
According to the classical formulae, the calculation of the
first- and second-order transfer function sensitivities needs in
the first place to find the corresponding derivatives. This is the
main problem sensitivity analysis and its investigation is an
object of some special methods, described in the literature [4],
[5]. Coates flow graph (CFG) is useful and often used in the
network theory and in the linear system theory [6]. On the
other hand, nullor-based models have been generated taking
into account the ideal behavior of the active devices [7].
However the input-output resistance and capacitance, gain,
input offset voltage or current and the frequency response are
all finite. This is the reason to include these effects in the
nullor-based models [8]. In this manner, any analog network
can be modeled with nullors and impedances, and the
equivalence between them is introduced in [8]-[11]. In this
paper, the equivalent nullor model of the active circuit is a
starting point for the sensitivity analysis. On the base of nullor

I.N. Asenova is with the Electrical Engineering Department, University

of Transport, Sofia, Bulgaria (e-mail: irka_honey@yahoo.com).

models using some network partial transfer functions, the
CFG is used for the first-order sensitivity analysis of active
networks [12]. This method was improved and simplified in
[13], [14] using the modified Coates flow graph (MCFG). The
symbolic equations generated by symbolic analysis help not
only understand the first-order functional behavioral of an
analog circuit, but also provide insight into second-order
effects in the circuit. In some network-optimization schemes,
it is desirable to know the dependence of first-order sensitivity
on the elements of the network [4], [15]. In [16] the nullor
model is combined with the MCFG aiming at the calculation
of the multiparameter sensitivity (MS) in a symbolic form.

In this paper the process of obtaining first-, second-order
and multiparameter symbolic sensitivity is automated and
allows obtaining of all symbolic sensitivities simultaneously.
The remaining work in this paper has been organized as
follows. A detailed description of symbolic sensitivity
analysis method, based on nullor model and modified Coates
flow-graph, is presented in Section 2. In Section 3, the
proposed method been applied to the nullor model of the
STAR network for calculation of its first-, second-order and
multiparameter symbolic sensitivities. Simulation results for
the symbolic sensitivities of the voltage transfer function for
the second-order high-pass filter are obtained. In Section 4,
the conclusions are discussed.

II. NULLOR-MODIFIED COATES FLOW GRAPH SYMBOLIC

SENSITIVITY ANALYSIS METHOD

A. Reduction of the Nullor Circuit Complexity
This section analyses a case when more than one parameter

are likely to vary in a given circuit. Suppose that p parameters
exist having very small fractional perturbations from their
nominal values. According to [8]-[11] an equivalent nullor
circuit N is composed by a designer. Let us assume that there
are m+n+R+1 nodes, and R nullors in N. In accordance with
[13], [14], the nodes, numbered from 1 to m represent network
sources, nodes from m+1 to m+n are inner nodes, that all or
some of them can be considered as output nodes, and the node
m+n+1 is the common node for the nullor circuit. The
sequence of the nodes in the nullor circuit is determined as
follows:

Calculation of First-, Second-Order and
Multiparameter Symbolic Sensitivity

of Active Circuits by Using Nullor Model
and Modified Coates Flow Graph

Irina N. Asenova

S

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��+

�������	
 � �
�� �� �����
���
 �� ���������
������ � �����
�� �������� ���	����� ���!����
� �� "�#$

