Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we show based on experiments that an invariant representation exists for various polymer-based solution processable organic thin film transistors (OTFTs). Despite the fact that this technology suffers from a non-negligible spread of parameters, all experimental data exhibit low dispersion when represented in a gm/Id versus Id diagram. This result is important for circuit design strategy based on the gm/Id representation, giving more insight into analogue design methodology. In addition, the gm/Id invariant can also be used to extract the gale voltage mobility dependence that is inherent to organic field effect transistor.
Rocznik
Tom
Strony
68--72
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
autor
autor
autor
autor
- Centre Suisse d'Electronique et de Microtechnique, CSEM SA, Mattenstrasse 22, 4016 Basel, Switzerland, frederic.zanella@csem.ch
Bibliografia
- [1] G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, "Organic transistors in optical displays and microelectronic applications", Advanced Materials, vol. 22, no. 34, p. 37783798, sept 2010.
- [2] H. Sirringhaus. "Materials and applications for solulion-processed organic field-effect transistors", Proceedings of the IEEE, vol. 97, no. 9, pp. 1570-1579, sept 2009.
- [3] R. A. Street, "Thin-film transistors", Advanced Materials, vol. 21, no. 20, pp. 2007-2022, may 2009.
- [4] A Dodahalapur, "Organic and polymer transistors for electronics", Materials Today, vol. 9. no. 4, pp. 24-30, april 2006.
- [5] D. de Leeuw and E. Canlalore, "Organic electronics: Materials, technology and circuit design developments enabling new applications", Materials Science in Semiconductor Processing, vol. H, no. 5, pp. 199-204, oct 2008.
- [6] B. Murmann and W. Xiong. "Design of analog circuits using organic field-effect transistors", in IEEE/ACM International Conference an Computer-Aided Design (ICCAD), San Jose, CA, USA, 2010, pp. 504-507.
- [7] M E. Roberts. A. N. Sokolov, and Z. Bao, "Material and device considerations for organic thin-film transistor sensors", Journal of Materials Chemistry, vol. 19, no 21, pp. 3351-3363, sept 2009.
- [8] E. I. Meijer, C. Tanase, P. W. M. Blom, E. van Veenendaal, B.-H. Huisman, D. M. de Leeuw, and T. M. Klapwijk, "Switch-on voltage in disordered organic field-effect transistors", Applied Physics Letters, vol. 80, no. 20, p. 3838, 2002.
- [9] H. Jia, S. Gowrisanker, G. K. Pant, R. M. Wallace, and B. E. Gnadea, "Effect of poly (3-hexylthiopbene) film thickness on organic thin film transistor properties", The Journal of Vacuum Science and Technology A, vol. 24, no. 4, p. 12281232, 2006.
- [10] J.-F. Chang, H. Sirringhaus, M. Giles, M. Heeney, and 1. McCulloch, "Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors", Physical Review B. vol. 76, no. 20, nov 2007.
- [11] L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, "Close look at charge carrier injection in polymer field-effect transistors", Journal of Applied Physics, vol. 94, no. 9, p. 61296137, nov 2003.
- [12] C. C. Era. and E. A. Vittoz, Charge-Based MOS Transistor Modeling -The EKV Model for lj>w-Pciwer and RF 1C Design. 1st ed. John Wiley. aug 2006.
- [13] D. Binkley, Tradeoffs and Optimization in Analog CMOS Design, Isted John Wiley, jun 2008.
- [14] M. Kayal and M. Blagojevic, "Design methodology based on the analog blocks retargeting from bulk to FD SOI using EKV model", in Inlernaltonal Conference Mixed Design of Integrated Circuits and Sysiems (MIXDES), Gdynia, Poland, 2006, pp. 131-135.
- [15] H. Klauk, U. Zschieschang, and M. Halik, "Low-voltage organic thin-film transistors with large Iransconductanee", Journal of Applied Physics, vol. 102, no. 7, p. 074514, 2007.
- [16] H. Sirringhaus, P. J. Brown. R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W Meijer, R Herwig, and D. M. de Leeuw, "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers", Namte, vol. 401, no. 20, pp. 685-688, oct 1999.
- [17] J. Veres. S. D. Ogier. S. W. Leeming, D. C. Cupenino, and S. M. Khaffaf, "Low-k insulators as the choice of dielectrics in organic field-effect transistors", Advanced Functional Materials, vol. 13, no. 3, pp. 199-204, mar 2003.
- [18] H. Sirringhaui, N. Tessler, and R. H. Friend, "Integrated optoelectronic devices based on conjugated polymers", Science, vol. 280, p. 17411744. jun 1998.
- [19] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, "High-mobility polymer gate dielectric pentacene thin film transistors", Journal of Applied Physics, vol. 92. p. 5259, 2002.
- [20] I. C. Society, Ed., 1620 IEEE Standard Test Methods for the Characterization of Organic Transistors and Materials. Institute of Electrical and Electronics Engineers, apr 2004.
- [21] M. C. J. M. Vissenberg and M. Matters, "Theory of the field-effect mobility in amorphous organic transistors", Physical Review B Condensed Matter, vol. 57, no. 20. pp. 12964-12967, may 1998.
- [22] C. Detcheverry and M. Matters, ''Device simulation of all-polymer thin-film transistors", in Proceeding of the 30th European Solid-Slate Device Research Conference (ESSDERC). 2000, pp. 328-330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0029-0058