PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FOMCOM: a MATLAB toolbox for fractional-order system identification and control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
FOMCON is a new fractional-order modeling and control toolbox for MATLAB. It offers a set of tools for researchers in the field of fractional-order control. In this paper, we present an overview of the toolbox, motivation for its development and relation to other toolboxes devoted to fractional calculus. We discuss all of the major modules of the FOMCON toolbox as well as relevant mathematical concepts. Three modules are presented. The main module is used for fractional-order system analysis. The identification module allows identifying a fractional system from either time or frequency domain data. The control module focuses on fractional-order FID controller design, tuning and optimization, but also has basic support for design of fractional lead-lag compensators and TID controllers. Finally, a Simulink blockset is presented. It allows more sophisticated modeling tasks to be carried out.
Twórcy
autor
autor
autor
Bibliografia
  • [1] I. Podlubny, "Fractional-order systems and PIλDµ -controllers", vol. 44. no. 1, pp. 208-214, 1999.
  • [2] M. Yahyazadeh and M. Haen, "Application of fractional derivative in control functions." in Proc. Annual IEEE India Conf. INDICON 2008. vol. 1, 2008, pp. 252-257.
  • [3] A. Oustaloup, P. Melchior, P. Lanusse, O. Cois, and F. Dancla, "The CRONE toolbox for Matlab", in Proc. IEEE Int. Symp. Computer-Aided Control System Design CACSD 2000, 2000, pp. 190-195.
  • [4] D. Valrio. (2005) Toolbox ninteger For MatLab, v. 2.3. [Online] Available: http ://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
  • [5] A. Tepljakov, E. Petlenkov, and J. Belikov. (2011) FOMCON toolbox. [Online]. Available: http://www.fomcon.net/
  • [6] D. Xue, Y. Chen. and D. P. Atherton. Linear Feedback Control- Analysis and Design with MATLA.B (Advances in Design and Control), 1st ed. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2008.
  • [7] Y. Q. Chen, I. Petras, and P. Xue, "Fractional order control - a tutorial", in Proc. ACC '09. American Control Conference, 2009, pp. 1397-1411.
  • [8] C. A. Monje, Y Chen, B. Vinagre, D. Xue, and V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications, ser. Advances in Industrial Control. Springer Verlag, 2010.
  • [9] K. Miller and B. Ross, An introduction iti the fractional calculus and fractional differential equations. Wiley, 1993.
  • [10] I. Podlubny. Fractional differential equations, ser. Mathematics in science and engineering. Academic Press, 1999.
  • [11] A. A. Kilbas, H. M. Srivastava, and 1. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). New York, NY, USA: Elsevier Science Inc.. 2006.
  • [12] R. Oldenhuis. (2009) Optimize. MathWorks File Exchange. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/24298-optimize
  • [13] D. Matignon, "Generalized fractional differential and difference equations: Stability properties and modeling issues", in Proc. iifMath. Theory of Networks and Systems Symposium, 1998, pp. 503-506.
  • [14] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, "Frequency-band complex noninteger differentiator: characterization and synthesis", vol. 47, no. 1, pp. 25-39. 2000.
  • [15] I. Podlubny. L. Dorcak. and I. Kostial, "On fractional derivatives, fractional-order dynamic systems and Pl^D1* -controllers", in Proc. 36th IEEE Cnnf. Decision and Control, vol. 5, 1997, pp. 4985^990.
  • [16] C. Zhao, D. Xue, and Y. Chen, "A fractional order pid tuning algorithm for a class of fractional order plants", in Proc. IEEE Int Mechatrnrtics and Automation Cimf, vol. I, 2005, pp 216-221.
  • [17] A. Oustaloup. R. Malti. M. Aoun, and J. Sabatier, "Tutorial on system identification using fractional differentiation models", in J4th 1FAC Symposium on System Identification, 2006, pp. 606-611.
  • [18] T. T. Hartley and C, F. Lorenzo, "Fractional-order system identification based on continuous order-distributions", Signal Process., vol. 83, pp. 2287-2300, November 2003.
  • [19] D. Valrio and J. Costa, "Levy's identification method extended to commensurate fractional order transfer function", in EUROMECti Nonlinear Dynamics conference, Eindhoven, Netherlands, 2005,
  • [20] Y. Luo and Y. Chen, "Fractional-order [proportional derivative] controller for robust motion control: Tuning procedure and validation", in Prat. ACC '09. American Control Conference, 2009. pp. 1412-1417.
  • [21] M. Cech and M. Schlegel, "The fractional-order pid controller outperforms the classical one", in Process control 2006. Pardubice Technical University, 2006, pp. 1-6.
  • [22] C. Yeroglu, C. Onat, and N. Tan, "A new tuning method for PIλDµ controller", in Proc. Int. Conf. Electrical and Electronics Engineering ELECO 2009. vol. II, 2009, pp. 312-316,
  • [23] B. I. Lurie, "Three-parameter tunable tilt-integral-derivative (TID) controller", US Patent US5 371670, 1994.
  • [24] D. Xue and Y. Chen, "A comparative introduction of four fractional order controllers", in Proceedings of the 4th World Congress on Intelligent Control and Automation, 2002, pp. 3228-3235.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0029-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.