
FOMCON: a MATLAB Toolbox for
Fractional-order System Identification and Control

Aleksei Tepljakov, Eduard Petlenkov, and Juri Belikov

Abstract—FOMCON is a new fractional-order modeling and
control toolbox for MATLAB. It offers a set of tools for re-
searchers in the field of fractional-order control. In this paper, we
present an overview of the toolbox, motivation for its development
and relation to other toolboxes devoted to fractional calculus. We
discuss all of the major modules of the FOMCON toolbox as well
as relevant mathematical concepts. Three modules are presented.
The main module is used for fractional-order system analysis.
The identification module allows identifying a fractional system
from either time or frequency domain data. The control module
focuses on fractional-order PID controller design, tuning and
optimization, but also has basic support for design of fractional
lead-lag compensators and TID controllers. Finally, a Simulink
blockset is presented. It allows more sophisticated modeling tasks
to be carried out.

Index Terms—fractional calculus, matlab toolbox, automatic
control, pid controller, identification, control system design

I. INTRODUCTION

In recent years fractional-order calculus has gained a lot

of attention, especially in the field of system theory and

control systems design due to more accurate modeling and

control enhancement possibilities [1], [2]. Several tools have

been developed for fractional order system analysis, modeling

and controller synthesis. Among these tools are MATLAB
toolboxes CRONE [3], developed by the CRONE team, and

NINTEGER [4], developed by Duarte Valério.

The FOMCON toolbox for MATLAB [5] is an extension

to the mini toolbox introduced in [6], [7], [8], providing

graphical user interfaces (GUIs), convenience functions, means

of model identification in both time and frequency domains

and fractional PID controller design and optimization and a

Simulink block set. The goal of the toolbox is to provide an

easy-to-use, convenient and useful toolset for a wide range of

users. It is especially suitable for beginners in fractional order

control because of the availability of GUIs, encompassing

nearly every toolbox feature, applied workflow considerations

and the ability to get practical results quickly.
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In this paper we present an overview of the FOMCON

toolbox and its functions with a summary of used theoretical

aspects as well as illustrative examples. The paper is organized

as follows. In Section II the reader is introduced to some

basic concepts of fractional-order calculus used in control.

In Section III an overview of FOMCON toolbox and its

features is presented. In Section IV the main module and

main GUI facility used for fractional-order system analysis are

introduced. Then, the fractional-order identification toolset is

presented and discussed in Section V. An overview of the

fractional controllers follows in Section VI with particular

focus on the PIλDμ control design and optimization. Section

VII is devoted to an overview of the provided Simulink

blockset which can be used for more sophisticated fractional-

order system modeling. In Section VIII some of the current

limitations of the toolbox are outlined. Finally, in Section IX

conclusions are drawn.

II. AN INTRODUCTION TO FRACTIONAL CALCULUS

Fractional calculus is a generalization of integration and

differentiation to non-integer order operator aDα
t , where a and

t denote the limits of the operation and α denotes the fractional

order such that

aD
α
t =

⎧⎪⎪⎨
⎪⎪⎩
dα

dtα �(α) > 0,
1 �(α) = 0,∫ t
a
(dt)−α �(α) < 0,

(1)

where generally it is assumed, that α ∈ R, but it may also be

a complex number [7]. There exist multiple definitions of the

fractional differintegral. The Riemann-Liouville differintegral

is a commonly used definition [8]

aD
α
t f (t) =

1

Γ (m− α)

(
d

d t

)m
t∫

a

f (τ)

(t− τ)
α−m+1 dτ (2)

for m− 1 < α < m, m ∈ N, where Γ(·) is Euler’s gamma

function. Consider also the Grünwald-Letnikov definition

aD
α
t f (t) = lim

h→0
1

hα

[ t−a
h ]∑
j=0

(−1)j
(
α

j

)
f (t− jh) , (3)

where [·] denotes the integer part.

The Laplace transform of an α-th derivative with α ∈ R+ of

a signal x(t) relaxed at t = 0 (assuming zero initial conditions)

is given by

L
{
Dαx (t)

}
= sαX (s) . (4)
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Thus, a fractional-order differential equation

anDαny(t) + an−1Dαn−1y(t) + · · ·+ a0D
α0y(t) =

bmDβmu(t) + bm−1Dβm−1u(t) + · · ·+ b0D
β0u(t), (5)

where ak, bk ∈ R can be expressed as a fractional-order

transfer function in form

G (s) =
bms

βm + bm−1sβm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (6)

A system given by (6) is said to be of commensurate order if

all the orders of the fractional operator s are integer multiples

of a base order q such that αk, βk = kq, q ∈ R
+, 0 < q < 1.

The continuous-time transfer function can be expressed as a

pseudo-rational function H(λ), where λ = sq:

H (λ) =

m∑
k=0

bkλ
k

n∑
k=0

akλk
. (7)

Based on this concept, a fractional-order linear time-

invariant system can also be represented by a state-space

model

Dqx (t) = Ax (t) +Bu (t) (8)

y (t) = Cx (t) +Du (t) .

For more information on fractional-order calculus the inter-

ested reader is referred to the books [8], [9], [10], [11].

III. OVERVIEW OF THE FOMCON TOOLBOX

A. Motivation for Development

FOMCON stands for “Fractional-Order Modeling and Con-

trol”. The basic motivation for developing it was the desire

to obtain a set of useful and convenient tools to facilitate the

research of fractional-order systems in application to control

system design. This involved writing convenience functions,

e.g. the polynomial string parser, and building graphical user

interfaces to improve the general workflow. However, a full

suite of tools was also desired due to certain limitations

in existing toolboxes, which mostly focus on novel control

strategies (such as the CRONE control). FOMCON presently

aims at extending classical control schemes with concepts of

fractional-order calculus. The relation of FOMCON to other

MATLAB fractional calculus toolboxes is depicted in Fig. 1.

Further the relation is explained. FOMCON was built upon

an existing mini toolbox FOTF. It also uses several functions

from NINTEGER toolbox for system identification and if the

CRONE toolbox is available, it is also possible to export ob-

jects into the CRONE format for further processing. FOMCON

also incorporates the optimize() function [12]. The latter

and the NINTEGER functions are included with respect to the

two-clause BSD license.

With all previous considerations, the motivations for devel-

oping FOMCON are as follows:

• It is a product suitable for both beginners and more

demanding users due to availability of graphical user

interfaces and advanced functionality;

Fig. 1. MATLAB fractional-order calculus toolbox relations to FOMCON

• It focuses on extending classical control schemes with

concepts of fractional-order calculus;

• It can be viewed as a “missing link” between CRONE

and NINTEGER;

• With the Simulink blockset the toolbox aims at a more

sophisticated modeling approach;

• The toolbox can be ported to other platforms, such as

Scilab or Octave (some limitations may apply).

Further we present an overview of the toolbox and its features.

B. Toolbox Features

In FOMCON the main object of analysis is the fractional-

order transfer function given by (6). The toolbox focuses

on the SISO (single input-single output), LTI (linear time-

invariant) systems.

The toolbox is comprised of the following modules:

• Main module (fractional system analysis);

• Identification module (system identification in time and

frequency domains);

• Control module (fractional PID controller design, tuning

and optimization tools as well as some additional fea-

tures).

All the modules are interconnected and can be accessed from

the main module GUI as depicted in Fig. 2.

A Simulink blockset is also provided in the toolbox allowing

complex modeling tasks to be carried out. General approach

to block construction is used where applicable.

The FOMCON toolbox relies on the following MATLAB

products:

• Control System toolbox, required for most features;

• Optimization toolbox, required for time-domain identifi-

cation and integer-order PID tuning for common process

model approximation.

It is also possible to export fractional-order systems to the

CRONE toolbox format (this feature requires the object-

oriented CRONE toolbox to be installed).

Further we present an overview of each FOMCON module,

providing some theoretical background for the features as well

as illustrative examples.
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Fig. 2. FOMCON module relations (name of corresponding function to open
the GUI is given in parentheses)

IV. FRACTIONAL-ORDER SYSTEM ANALYSIS

FOMCON provides time-domain and frequency-domain

fractional-order system analysis, as well as verifying system

stability. In the toolbox fractional-order systems are given by

fractional-order transfer function (FOTF) objects in the form

(6). These objects are generalizations of the rational transfer

functions to the fractional order. To get started one could enter

the following into the MATLAB command line

fotf_gui

The main toolbox GUI called FOTF Viewer is then dis-

played (see Fig. 3). It is divided into two panels:

• The left panel entitled Fractional order transfer func-
tions is used to input, edit, delete and convert FOTF

objects. The tool is directly working with MATLAB base

workspace variables;

• The right panel entitled System analysis contains means

for fractional-order system analysis in the time domain

and in the frequency domain.

The Tools menu contains links to the time-domain and

frequency-domain identification tools and the fractional PID

design tool.

Fractional-order transfer functions may be created in the

workspace by pressing the Add ... button in the GUI. A dialog

is shown allowing to enter the zero/pole fractional polynomials

of the system (a simple string parser is provided). The system

can then be analyzed using the tools in the right panel. Further

we discuss the algorithms used to carry out the analysis.

Stability of a fractional-order LTI system (8) can be deter-

mined from the following relation∣∣∣arg (eig (A))∣∣∣ > γ
π

2
, (9)

where 0 < γ < 1 is the commensurate order of a fractional

state-space system and eig(A) represents the eigenvalues of

the associated matrix A. If condition (9) is satisfied, then the

system is stable [13]. During the stability test a figure is drawn

and populated by the corresponding rational-order system (7)

poles. This is an illustration to condition (9): if any of the

Fig. 3. Main GUI window

poles are inside the shaded area of the figure the system is not

stable.

Time-domain analysis of the fractional systems, i.e. sim-

ulation of the system response to an arbitrary input signal,

is carried out using a revised Grünwald-Letnikov definition in

(3). The closed-form numerical solution to the fractional-order

differential equation is obtained in [7] as

yt =
1

n∑
i=0

ai
hαi

⎡
⎢⎣ut − n∑

i=0

ai
hαi

t−a
h∑
j=1

w
(αj)
j yt−jh

⎤
⎥⎦ , (10)

where h is the step-size in computation and w
(α)
j can be

computed recursively from

w
(α)
0 = 1, w

(α)
j =

(
1− α+ 1

j

)
w
(α)
j−1, j = 1, 2, . . . . (11)

The signal û (t) is calculated by using (3) substituting

(−1)α (
α
j

)
= w

(α)
j and finally the time response under the

signal u (t) is obtained. Due to the fixed-step computation the

accuracy of the simulation may depend on the chosen step-

size h. Thus it is suggested to validate the results by gradually

decreasing h until there is no variation in simulation results.

Simulation of a large number of points may take a lot of time.

A progress bar option is provided to allow keeping track of

simulation progress in such cases.

The frequency-domain analysis is done by substituting

s = jω. All the required system frequency characteristics

are then obtained using Control System toolbox by supplying

the complex frequency response of the plant to the frequency

response data object frd and then using the standard toolbox

frequency response analysis functions bode(), nyquist(),

nichols().

The export facility in the main GUI allows converting FOTF

systems into objects of the following type

• Oustaloup filter zpk;

• Oustaloup refined filter zpk;

• Fractional-order state-space foss;

• CRONE frac_tf;
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Fig. 4. FOTF entry dialog

• CRONE frac_ss.

The last two options are specific to the Object-Oriented

CRONE toolbox and require it to be installed.

The Oustaloup filters give a very good approximation of

the fractional operators [14] in a specified frequency range

(ωb, ωh) and of order N . Oustaloup’s recursive filter for sγ

for 0 < γ < 1 is given by

Gf (s) = K

N∏
k=−N

s+ ω′k
s+ ωk

, (12)

where ω′k, ωk and K are obtained from

ω′k = ωb

(
ωh
ωb

) k+N+1
2
(1−γ)

2N+1

, (13)

ωk = ωb

(
ωh
ωb

) k+N+1
2
(1+γ)

2N+1

, K = ωγh.

A refined Oustaloup filter has been proposed in [6]. It is

given by

sα ≈
(
dωh
b

)α
(

ds2 + bωhs

d (1− α) s2 + bωhs+ dα

)
Gp, (14)

where Gp, ωk and ω′k can be computed from

Gp =
N∏

k=−N

s+ ω′k
s+ ωk

, (15)

ωk =

(
bωh
d

) α+2k
2N+1

, ω′k =
(
dωb
b

) α−2k
2N+1

.

It is expected that a good approximation using (14) is

obtained with b = 10, d = 9.
Fractional-order systems are converted to Oustaloup filter

zpk objects by approximating fractional orders α ≥ 1 by

sα = snsγ , where n denotes the integer part of α and sγ

is obtained by the Oustaloup approximation. Objects exported

this way can be analyzed using regular Control System toolbox

means. There is also an option to automatically launch the LTI
Viewer tool upon a successful export.

Example 1. Consider a system given in [7] by

G (s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

To supply this system as “G3” one would enter the following

in the Add ... dialog (see Fig. 4).

(a) Stability
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Fig. 5. G3 system analysis
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Fig. 6. G3 step response using different calculation methods

Suppose we need to check this system for stability, obtain

a Bode diagram and a step response.

The stability analysis illustration is given in Fig. 5a. It can

be seen from the zoomed plot that there are no poles inside

the shaded region. Therefore, the condition (9) is satisfied and

the system is stable. The Bode diagram is shown in Fig. 5b.

A step response in time range t = [0; 30] with a step of

h = 0.01 is obtained using the Grünwald-Letnikov method

(10). The results are given in Fig. 6.

Example 2. Consider a dynamic model of a heating furnace

discussed in [15], [16] given by a differential equation

a2D
αy(t) + a1D

βy(t) + a0y(t) = u(t), (16)

with α = 1.31, β = 0.97, a2 = 14994, a1 = 6009.5, a0 =
1.69. In the Laplace domain, assuming zero initial conditions,

the system is described by a fractional-order transfer function

G1(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
.

We shall examine Oustaloup filter approximations of this

fractional system. Let us create two filters, an Oustaloup

filter Z1 and a refined Oustaloup filter Z2 with the default

parameters (ω = [10−4; 104], N = 5) and compare the

resulting system step response (at t = [0; 35000] with dt =
0.5) and frequency response characteristics (Fig. 7a and 7b

respectively).

From this example it can be clearly seen that only the refined

Oustaloup filter proposed in [6] provides a valid approximation

of the fractional-order system than the Oustaloup filter with the

same approximation parameters. However, it is also possible to
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Fig. 8. FOTF Time-domain Identification Tool user interface

obtain a better approximation for this particular system with

the Oustaloup filter by shifting the frequency range to ω =
[10−6; 102].

V. IDENTIFICATION BY FRACTIONAL-ORDER MODEL

A. Time-domain Identification

The time-domain identification tool can be accessed from

the main GUI via menu Tools→Identification→Time do-
main... or by typing the following into the MATLAB com-

mand line:

fotfid

The corresponding GUI will be launched (depicted in Fig.

8). The tool allows to identify a system by a continuous-time

fractional-order model in the form (6).

This is done by fitting an initial model using the least-

squares approach minimizing the error norm
∥∥e (t)∥∥2

2
, where

e (t) = y (t)− yid (t) , (17)

by searching for a set of parameters θ of model (6), where

θ = [ ap αp bz βz ] (18)

and

ap = [ an an−1 · · · a0 ], (19)

αp = [ αn αn−1 · · · α0 ],

bz = [ bm bm−1 · · · b0 ],

βz = [ βn βn−1 · · · β0 ].

The given parameter set can be further reduced allowing

different identification strategies to be applied. The initial

model can also be generated form a given commensurate

order and the highest order of the model. This is useful

when identification is carried out using methods discussed in

[17]. The initial guess model can also be imported from the

MATLAB workspace.

There is a number of possibilities to fix either fractional-

order polynomials, polynomial term coefficients or exponents.

Thus a generalized identification tool is obtained, capable of

identifying fractional-order systems as well as integer-order

systems. There is a possibility to limit the value ranges of the

identified parameters. Since it is possible to reduce the number

of identified parameters, the identification for complex systems

is better conditioned for the underlying optimization task.

A special data structure is used to store the identification

data. It can be constructed from the command-line in the

following manner:

id1 = fidata(y, u, t);

where id1 is the data structure used for identification, y
is the experimental output signal, u is the experimental input

signal and t is the time vector. The identification tool only

works with this type of data structure.

Example 3. Suppose a fractional-order system is given by

G2 (s) =
1

0.8s2.2 + 0.5s0.9 + 1
.

In order to generate identification test data, the following

MATLAB commands can be used:

t = (0:0.01:20)’;
u = zeros(length(t),1);
u(1:200) = ones(200,1);
u(1000:1500) = ones(501,1);
y = lsim(G2,u,t)’;
iddata1 = fidata(y,u,t);

If nothing but experimental data is known the only way

to identify the system is by experimenting with different

commensurate orders and orders of the initial model. Also the

term coefficients and differentiation orders can be adjusted

manually. In this case, if a fractional pole polynomial is

selected such, that it is generated with commensurate order

q = 1.2 and order N = 2, the zero polynomial is fixed at zp =
1, free identification is used with term coefficients limited to

clim = [−20; 20] and exponents limited to elim = [1·10−8; 3]
then the system is identified as

Ĝ(s) =
1

0.8s2.2 + 0.5s0.90001 + s9.7153·10−7 .

������������	 
�����	 �� 
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��



Fig. 9. Experiment schematic diagram

It can be seen that the last term has an order α = 9.7153 ·
10−7 → 0 and thus the original model is successfully recov-

ered and can be obtained by typing round(Gid, 1e-4,
1e-4) in MATLAB. In order to validate the data, one could

also type validate(iddata1, Gid). A figure will be

drawn showing the comparison of the sampled and identified

system responses to the experimental input data as well as the

output error.

Example 4. Consider now an example, where a real system is

identified. Experimental data is collected from a real thermal

object. The schematic diagram corresponding to the experi-

ment is depicted in Fig. 9.

The temperature is measured using a type K thermocouple

with a DC output of 0...10 mV, amplified with a gain of 30

and fed into a Velleman PCS100 oscilloscope, which is used

to register both the temperature obtained from the amplified

thermocouple signal and the voltage source signal. Data was

collected from three consecutive experiments. Different volt-

age set values were used. Due to some limitations of used soft-

ware and hardware, a total of 1700 points were recorded with

a sampling interval of Ts = 2 seconds. The obtained system

output vector was then filtered ensuring zero phase distortion

using a low-pass filter by means of MATLAB filtfilt()
function, and a transformation was applied so that the output

signal vector would contain real temperature values in ◦C. To

account for zero initial conditions requirement the temperature

output signal was also shifted such that t = 0→ y(t) = 0. A

transformation was applied such that û(t) = 0.01 · u2(t) —

the obtained input signal is thus a rough approximation of the

final temperature value.

The identification was then carried out using the fotfid
tool. From previous experience it is known that in case of

an integer-order model this system can be approximated by a

second order model. Thus, it is possible to obtain the initial

guess model by generating a fractional pole polynomial with

q = 1, n = 2 and fixing the zero polynomial at “1” so that a

classical, integer order model is initially obtained in the form

Ginit(s) =
1

s2 + s+ 1
.

The free identification method was used with coefficient

limits clim = [0; 3000] and exponent limits elim = [10
−9; 3].

The following model was obtained:

Ĝ(s) =
1

2012.409s1.8063 + 107.2882s0.93529 + 1.0305
.
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Fig. 10. Thermal system fractional model validation

TABLE I
PROCESS MODEL IDENTIFICATION COMPARISON

IDENTIFIED MODEL SQUARE ERROR

NORM

Ĝ1(s) =
1

2012.409s1.8063+107.2882s0.93529+1.0305
71.7702

Ĝ2(s) =
0.96039

2655.4725s2+151.626s+1
e−1.1844s 72.3396

Ĝ3(s) =
0.96035

2835.2438s2+152.593s+1
81.8971

Validation is carried out with the same dataset as for

identification. The corresponding plot is given in Fig. 10.

Two integer-order models were obtained from the same

experimental dataset by using the MATLAB Identification

toolbox for comparison. Results are provided in Table I.

Taking the square error norm as a measure of model

precision, one could say that the fractional-order model Ĝ1 is

more accurate than the integer-order models Ĝ2 and Ĝ3. This

is to be expected due to the properties of fractional operators

and the extra degrees of modeling freedom and allows for an

improvement in control system characteristics. However, in

order to claim this explicitly one would need to use hardware

and software methods with a more strict precision requirement.

B. Frequency-domain Identification

The time-domain identification tool can be launched from

FOTF Viewer via menu Tools→Identification→Frequency
domain... or by typing the following into the MATLAB

command line:

fotfrid

The frequency-domain identification tool GUI will then be

displayed. The tool allows to identify a fractional-order model

either in the form

G(s) =
1

cnsnγ + cn−1s(n−1)γ + · · ·+ c1sγ + c0
(20)

or in the form

G(s) =
bms

mγ + bm−1s(m−1)γ + · · ·+ b1s
γ + b0

ansnγ + an−1s(n−1)γ + · · ·+ a1sγ + 1
, (21)
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where γ is the fractional-order transfer function commensu-

rate order and n, m are the corresponding polynomial orders.

Further we discuss the identification methods used by the tool.

Three algorithms for system identification in the frequency

domain are available [18], [19]. The Hartley method allows

to obtain the model (20) parameters c0, c1, . . . , cn from

the experimentally collected complex frequency response by

solving the following equation⎡
⎢⎢⎢⎢⎣

1
G(jω1)
1

G(jω2)

...
1

G(jωm)

⎤
⎥⎥⎥⎥⎦ = (22)

⎡
⎢⎢⎢⎢⎣
1 (jω1)

γ (jω1)
2γ · · · (jω1)

nγ

1 (jω2)
γ (jω2)

2γ · · · (jω2)
nγ

...
...

...
. . .

...

1 (jωm)
γ (jωm)

2γ · · · (jωm)
nγ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
...

cn

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where ω1, ω2, . . . , ωn are the sampling frequencies. When

using this algorithm, the user must supply the commensurate

order γ as well as model order n.

The Levy and Vinagre identification methods allow to

identify a fractional-order model in the form (21). The un-

derlying algorithm for both methods is the same. It finds the

parameters for an experimental frequency response given by

G(jω) = �(ω) + j�(ω) by solving the following equation

[
A B
C D

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...

bm
a1
...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
e
g

]
, (23)

where b0, . . . bm and a1, . . . an are the identified model

parameters and A, B, C, D and e, g are constructed from the

experimental data. Please see [19] for detailed explanation of

these parameters.

During identification using Levy’s method the following

square norm is minimized:

ε = G(jω)
[
an(jω)

nγ + · · ·+ a1(jω)
γ + 1

]
(24)

− [
bm(jω)

mγ + · · ·+ b1(jω)
γ + b0

]
.

The Vinagre method adds weights to the norm in order

to improve the approximation at low frequencies such that

ε′ = w · ε, where weights w are frequency dependent and for

frequencies ωi, i = 1, ..., f they are given by

w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω2−ω1
2ω21

, i = 1,
ωi+1−ωi−1

2ω2i
, 1 < i < f,

ωf−ωf−1

2ω2f
, i = f.

In order to use these methods, the user needs to supply the

commensurate order, as well as fractional polynomial orders n
and m. This allows for an additional optimization problem to

be stated for a set of parameters θ =
[
γ n m

]
. An objective

function to minimize is given by a performance index in the

form

J =
1

nω

nω∑
i=1

∣∣∣G(jω)− Ĝ(jω)
∣∣∣2 ,

where nω is the number of frequencies in ω, G is the

original plant, from which the response was obtained, and Ĝ
is the identified plant. The error index is also used to evaluate

the identification result in general.

As with the time-domain identification, a special data struc-

ture ffidata is used to hold the experimental frequency

response. It can be constructed from the MATLAB command-

line as follows:

id1 = ffidata(mag, ph, w);

or

id1 = ffidata(r, w);

where mag is the observed frequency response magnitude

in dB, ph is the observed frequency response phase angle in

degrees and w is the vector containing frequencies in rad/s,

where the response is known. Alternatively, it is possible

to create the identification data structure using the complex

response r.

Example 5. In this example we will illustrate the use of the

frequency-domain identification tool. Consider a plant given

by

G(s) =
s0.32 + 5

100s1.92 + 20s0.96 − 5s0.64 + 1 .

Let us generate an identification dataset fid1 with 50

logarithmically spaced frequency sample points in the range

ω = [10−4; 104]. This can be done by writing the following

into the MATLAB command line:

G = newfotf(’s^0.32+5’, ...
’100s^1.92+20s^0.96-5s^0.64+1’);

w = logspace(-4, 4, 50);
fid1 = ffidata(freqresp(G, w), w);

We will now identify the fractional model by means of the

fotfrid tool.

As with the time-domain identification, if no information

about the model is given, the only way to identify it is

by trial and error. The good news is that frequency-domain

identification is fast. In this case, one could use the Vinagre

method and choose a commensurate order q = 0.2, leaving

the polynomial orders at their default value n = m = 5, and

also apply the best fit identification by going to Tools→Best
fit and setting the maximum model orders to N = 6 in the

optimization settings dialog. With these settings applied the
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following model is obtained:

Ĝ(s) =
b̂(s)

â(s)
,

b̂(s) = 2.6322 · 10−15s1.92 − 1.4416 · 10−13s1.6
+ 3.2699 · 10−12s1.28 − 3.7288 · 10−11s0.96
+ 2.1969 · 10−10s0.64 + s0.32 + 5,

â(s) = 100s1.92 + 1.6987 · 10−8s1.6
− 1.0219 · 10−8s1.28 + 20s0.96 − 5s0.64
− 1.5758 · 10−10s0.32 + 1.

The initial system can be obtained using the following:

G = trunc(Gid, 1e-5, 1e-5)

Obviously, the system used in this example was relatively

easy to identify. In practical cases, one should carefully

consider the choice of the commensurate order. The identified

system polynomials may be of a very high order, in which case

the Best fit tool will be less useful due to large computational

efforts involved.

For a practical example of frequency-domain identification

see the fractional lead-lag compensator realization in Example

7.

VI. FRACTIONAL-ORDER CONTROL

In this section we discuss the fractional-order controllers

used in the FOMCON toolbox, namely the fractional PID con-

troller, fractional lead-lag compensator and the TID controller.

Our main focus will be on the fractional PID controller, due

to its importance in the industry [7].

A. PIλDμ Controller Design, Tuning and Optimization

The fractional-order PID controller was first introduced by

Podlubny in [1]. This generalized controller is called the

PIλDμ controller (notation PIλDδ is also used in literature)

and has an integrator with an order λ and a differentiator of

order μ. Recent researches show that the fractional-order PID

outperforms the classical PID [20], [21].

The fractional PID controller transfer function has the

following form

Gc(s) = Kp +
Ki

sλ
+Kds

μ. (25)

Obviously, when taking λ = μ = 1 the result is the classical

integer-order PID controller. With more freedom in tuning the

controller, the four-point PID diagram can now be seen as a

PID controller plane, which is conveyed in Fig. 11.

The fractional-order PID design tool can be accessed from

the main GUI by Tools→Fractional PID design or by the

fpid command. It allows to design a PIλDμ controller for a

typical negative feedback unity system shown in Fig. 12.

There are several approaches for fractional PID design

which depend on the plant to be controlled. If the plant is given

by an integer-order model, then classical tuning procedures

could be employed to obtain integer-order PID parameters.

Fig. 11. The PIλDμ controller plane

Fig. 12. Feedback control system with fractional PID controller

Fractional PID orders can then be tuned to achieve enhanced

performance. A tool is provided which permits identifying the

process (which could also be fractional-order) by well-known

models (FOPDT, IPDT, FOIPDT) and computing integer-order

PID gains using classical tuning strategies such as Ziegler-

Nichols, Åström-Hägglund etc. [6]. This tool can be accessed

from the menu Tuning→Integer-order PID or by typing

iopid_tune. For fractional-order PID tuning consider meth-

ods proposed in [8], [22].

Another case is when the plant is of fractional-order. No

special tuning method is currently provided. However, a tuning

method for a class of plants can be found in [16].

The optimization tool, provided in FOMCON, can in prac-

tice be used for fractional PID tuning due to its flexibility.

The tool can be accessed from the PID design tool menu

Tuning→Optimize (or by typing fpid_optim). The tool is

shown in Fig. 13. Here is a summary of the options provided:

• Plant model and fractional PID approximation type. Only

Oustaloup filter type simulations are used mainly due to

processing speed.

• Possibility to tune all parameters, fix gains or fix frac-

tional exponents.

• Possibility to constrain every tuned parameter, except for

the lower bound of the exponents which is fixed.

• Optimization to several performance metrics (ISE, IAE,

ITSE, ITAE).

• Some control over control system performance specifica-

tions (gain and phase margin).

• User-defined number of optimization iterations.

The optimization tool uses the optimize function [12] in

order to tune the fractional PID parameters by minimizing the

function given by the corresponding performance index. These

are as follows:

• Integral square error ISE =
∫ t
0
e2(t) dt,

• Integral absolute error IAE =
∫ t
0

∣∣e(t)∣∣ dt,
• Integral time-square error ITSE =

∫ t
0
te(t)2 dt,
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Fig. 13. Fractional PID optimize tool

• Integral time-absolute error ITAE =
∫ t
0
t
∣∣e(t)∣∣ dt,

where e(t) = 1 − y(t), y(t) is the tuned fractional control

system step response.

Example 6. Consider the model of a thermal object we

obtained through identification in Example 4:

G =
1

2012.4087s1.8063 + 107.2882s0.93529 + 1.0305
.

We will now design a PIλDμ controller for this plant using

the optimization tool.
Initially the PID parameters are set to Kp = Ki =

Kd = 100, λ = μ = 1. The exponents are fixed so that an

integer-order PID could be designed. Search limits are set to

K = [−500; 500] for gains and γ = [0.01; 2]. For simulation,

the refined Oustaloup filter approximation is used with default

parameters (ω = [0.0001; 10000], N = 10). Specifications are

as follows. Gain margin is set to 10 dB, while phase margin

to 45 degrees (non-strict). Performance metric is IAE.
Optimization with these settings leads to the follow-

ing integer-order PID controller parameter set: Kp =
457.8607, Ki = 0.97807, Kd = 408.3947. Obtained open-

loop phase margin is ϕm = 45.01
◦. Next the gains are fixed

and integrator and differentiator orders are set to λ = μ = 0.5.
The strict option is enabled. The optimization is then contin-

ued. As a result, the orders are found such that λ = 0.24726
and μ = 0.7528.

A comparison of simulation of the designed control systems

with a set value SV = 150 is shown in Fig. 14. It can be seen,

that by tuning only the orders of the controller a better result

is achieved. It is important to note, however, that this result is

obtained with an unconstrained control effort value, which is

always limited in practical situations. Thus it may be required

to review the controller settings according to these limitations

for practical use.

B. Fractional Lead-Lag Compensator
Lead-lag compensators are a well-known type of feedback

controller widely used in practice. Extending it with ideas from
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Fig. 14. Control system for thermal object comparison

fractional calculus can lead to a more robust controller.

A fractional-order lead-lag compensator has the following

transfer function:

Gc(s) = k′
(
λs+ 1

xλs+ 1

)α

, (26)

where α is the fractional order of the controller, λ and x
are parameters such that 1

λ = ωz is the zero frequency and
1
xλ = ωp is the pole frequency and k′ = Kcx

α. When α >
0 the controller (26) corresponds to a fractional-order lead

compensator and when α < 0 it corresponds to a fractional

lag compensator.

The contribution of parameter α is such, that the lower

its value, the longer the distance between the zero and pole

and vice versa so that the contribution of phase at a certain

frequency stands still. This makes the controller more flexible

and allows a more robust approach to the design. Tuning and

auto-tuning techniques are discussed in [8].

No specialized tool is yet available in FOMCON for frac-

tional lead-lag controller tuning. However, tools are proposed

for the analysis of this controller. Since the controller is given

in implicit form, to obtain a transfer function the following

can be done:

• Obtain a complex frequency response of the controller,

a special function frlc() is available in FOMCON for

this task;

• Identify the controller using an appropriate tool.

Further we illustrate this procedure.

Example 7. Consider an integer-order plant given by a model

G(s) =
2

s(0.5s+ 1)
.

In this example, we will realize a fractional lead-lag com-

pensator for this plant discussed in [8]. The gain crossover

frequency is chosen such that ωcg = 10 rad/sec. At this

frequency the plant has a magnitude of −28.1291 dB and

a phase of −168.69◦. To achieve a magnitude of 0 dB at

the gain crossover frequency and a phase margin ϕm = 50◦

the fractional lead compensator is designed with parameters

k′ = 10, x = 0.005, λ = 0.6404, α = 0.5 and thus has the

following implicit fractional-order transfer function

Gc(s) = 10

(
0.6404s+ 1

0.0032s+ 1

)0.5
.
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Fig. 15. Fractional lead compensator realization
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Fig. 16. Control system with fractional lead compensator step response

In order to implement this controller, the frequency response

data is obtained using the frlc() function in the range ω =
[10−5; 105] and a frequency-domain identification dataset is

created by typing the following in MATLAB:

w = logspace(-5,5,1000);
r = frlc(10,0.005,0.6404,0.5,w);
flc = ffidata(r,w);

Next, the fotfrid tool is used to obtain a fractional-order

approximation of the compensator. With q = 0.492, setting

both polynomial orders to 4 and using the Vinagre method, the

following fractional-order transfer function is obtained with an

error J = 0.014867:

Ĝc(s) =
b̂(s)

â(s)
,

b̂(s) = 0.031325s1.968 + 0.30643s1.476

+ 4.6284s0.984 + 4.0234s0.492 + 10.0005,

â(s) = 0.0002215s1.968 + 0.0021625s1.476

+ 0.061928s0.984 + 0.41302s0.492 + 1.

The frequency fitting result is also shown in Fig. 15a. The

open-loop control system frequency response is given in Fig.

15b. It can be seen, that the desired crossover frequency

ωcg = 9.94 and phase margin ϕm = 51.6◦ are very close

to specification.

Finally, the step response of the designed control system is

given in Fig. 16.

Fig. 17. Bode plots for PID controlled plant and the ideal loop response

C. TID Controller

The TID (tilt-integral-derivative) controller was first pro-

posed in [23]. The structure of the TID controller is given by

the following transfer function

Gc(s) =
Kt

s
1
n

+
Ki

s
+Kds, (27)

where Kt/s
1
n is the Tilt type compensator and n ∈ R, n >

0, preferably n ∈ [2; 3]. It can be seen, that the TID controller

corresponds to a conventional PID controller with proportional

gain replaced by the compensator component. The motivation

for this type of controller is from the consideration of Bode’s

theoretically optimal loop response (see Fig. 17). A possible

tuning strategy according to this consideration is given in [23],

[24].

In order to obtain a fractional transfer function in FOM-

CON, one could use the following:

Gc = tid(Kt, n, Ki, Kd);

where parameters Kt, n, Ki, Kd correspond to those in

(27).

VII. MODELING IN SIMULINK

The FOMCON Simulink block library currently consists of

eight blocks and is shown in Fig. 18.

The library is based on Oustaloup filter approximation by

means of the oustapp() function. The discrete blocks use

the Control System toolbox function c2d() to obtain the

discrete model from the Oustaloup filter LTI system. General

block structure is used where applicable.

The difference between the Fractional operator and Frac-
tional derivative blocks is that the order α of the former is

limited to 0 < α < 1.
In order to ensure efficient and accurate simulation, the

model built with these blocks may be made up of stiff systems

and an appropriate solver should be used in Simulink in such

a case (ode15s or ode23tb).

Example 8. Consider a model of a dynamic system and the

corresponding fractional-order controller discussed in [6] and

given by the following transfer functions:

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
,

Gc(s) = 233.4234 +
22.3972

s0.1
+ 18.5274 · s1.15.
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Fig. 18. FOMCON Simulink library

Fig. 19. System model in Simulink

Let us build the corresponding model in Simulink, using

the above blockset. The resulting model is given in Fig. 19.

A saturation block is added, limiting the control signal within

an interval Ulim = [−100; 100] and adding a band-limited

white noise block for simulating disturbance in the system

with power of P = 10−9, sample time of T = 0.01 and seed

value of 23341. System simulation result is given in Fig. 20.

VIII. DISCUSSION

The FOMCON toolbox was developed and tested in MAT-

LAB v. 7.7. However, most of the features are backwards-
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Fig. 20. Fractional-order control system simulation result

compatible and were tested with earlier releases of MAT-

LAB (versions 7.4-7.6). FOMCON requires System Control

toolbox for general functionality and Optimization toolbox for

model identification in the time domain.

Further, we discuss some of the current limitations of the

FOMCON toolbox.

• The PID optimization tool lacks complete control over

control system gain and phase margins. The algorithm

can only guarantee that the minimum given specifications

are met by evaluating the open-loop control system

at every optimization step when the Strict option is

checked. However, the initial fractional PID parameters

should strictly satisfy the minimum specifications or else

optimization will not be carried out and an error will be

issued.

• More design specifications settings are required for PID

tuning, including minimum and maximum allowed value

settings for the control effort.

• Both the identification and optimization tools work with

numbers at a fixed accuracy of four decimal places.

• Time domain identification tool does not yet identify the

system lag parameter.

• There are no automatic tuning algorithms implemented

for the fractional lead-lag compensator and TID con-

troller.

• While the order of the fractional derivative block in

Simulink can have an order α > 1, the accuracy of the

simulation will be reduced with higher orders.

The current limitations of the FOMCON toolbox will be

the subject of further development and will be gradually

eliminated in future releases.

IX. CONCLUSIONS

In this paper, we presented a MATLAB toolbox containing

the necessary tools to work with a class of fractional-order

models in control. Theoretical aspects behind the tools were

also covered with illustrative examples. A set of graphical

user interfaces was introduced with relevant comments. We

have discussed fractional-order system analysis, identification

in both time and frequency domains and a set of fractional-

order controllers, focusing on tuning and optimization of the

fractional PID controller. The performance of the latter was

found to be superior to an integer-order PID obtained during

the same tuning procedure. A Simulink blockset was also

presented in the paper.
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