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Abstract—The paper is dedicated on the improving of the
frequency response of FBAR filters by replacement some of the 
single FBARs with two parallel connected resonators. The 
method is applied for the basic lattice filter architecture and its 
modification with twice less number of FBARs. The conditions, 
which must satisfy the resonator parameters, are derived by 
theoretical considerations and computer simulations. 
 

Index Terms—Film Bulk Acoustic-wave Resonators (FBAR),
radio-frequency filters, FBAR filters, piezo-resonator filters.  
 

I. INTRODUCTION 
HE film bulk acoustic-wave resonators (FBAR) found in 
the last years fast growing application for realizing of 

high selective filters for the analog front-ends in the radio 
transmitters and receivers. Basic FBAR advantages, which led 
to their wide application, are their very low losses, better 
temperature stability, the appropriate frequency range of 
operation, ability to handle relatively high powers, good 
compatibility with the existing CMOS technology, etc. [1-6]. 

There are two basic architectures of FBAR filters using 
separated resonators: ladder and lattice, shown in Fig. 1 [1], 
[5]. Double mode filters, using decoupled stacked bulk 
acoustic resonators (DSBAR) [5], are also proposed, however 
they are outside of the scope of this paper and they will not be 
commented here. 

 
Fig� 1. (a) Ladder FBAR filter with 5 resonators; (b) lattice filter. 

 
This work was supported by �������	
���
��

����
��
��������
��

Education, Youth and Science of ��	������
���������
�����
������!��������
and DDVU 02/6/17.10.2011.  

I. Uzunov is with the Dept. of Telecomm. Networks, Technical University 
of Sofia, Bulgaria (e-mail: iuzunov@tu-sofia.bg).  

D. Gajdajiev is with Microelectronics Technology Dept., Smartcom 
Bulgaria AD, Sofia, Bulgaria (e-mail: dobromir_gaydajiev@smartcom.bg). 

V. Yantchev is with the Dept. of Solid State Electronics, Uppsala 
University, Sweden, (e-mail: veya@angstrom.uu.se). 

 

The series resonance frequency fsa of the series resonators 
Qa in the ladder filters must be equal to the parallel resonance 
frequency fpb of the shunt resonators Qb. This requirement 
comes from the basic principle of operation of the ladder 
filters: the series FBARs have zero impedance at fsa and 
realize short circuit between input and output, while the shunt 
resonators are equivalent to open circuits at the same 
frequency (fpb = fsa) and do no shunt the signal (power losses 
in the resonators are neglected). The resonators produce 
transmission zeros at their two other resonance frequencies: 
the shunt resonators Qb at their series resonances fsb and series 
resonators Qa at their parallel resonances fpa. The transmission 
zeros at fsb and fpa limit the passband bandwidth and cause 
returning of the filter frequency response to relatively low 
attenuation at frequencies below fsb and above fpa. The 
increasing of the attenuation in this region is achieved usually 
by cascading of few �-type sections, each one consisting of 
one series and one shunt FBAR (e.g. the filter in Fig 1(a) 
consists of 2½ sections). Side effects of this approach are 
further shrinking of the filter passband and undesirable 
increasing of the passband losses. 

Therefore the passband width in the ladder filters is defined 
basically by the distance between series and parallel 
resonances of the resonators. Computer simulation shows that 
the width of the passband of single �-type section, measured 
at -0.3dB level, is about 2.3% from the passband central 
frequency for FBARs with ratio fp/fs � 1.027 (effective 
coupling factor = 6.2%). The proposed methods for 
extending of the filter passband try to increase this distance. 
One way is to increase the effective coupling factor  of 
the resonators by technological means, since it determines the 
ratio between their series and parallel resonance frequencies 
[6],[7]. Other methods increase the distance between f
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s and fp 
by connecting small inductors in series to the resonators 
[5],[8]. Their effect can be explained if consider the frequency 
behavior of the imaginary parts of the FBAR impedance (its 
reactance), simulated by using of the modified Butterworth - 
Van Dyke (mBVD) FBAR model. The model and the 
frequency response are shown in Fig. 2. The impedance is 
negative with relatively small magnitude below the FBAR 
series resonance and adding small inductance (few nH) in 
series moves downward the series resonance frequency of the 
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combination. An inductor in parallel to the resonator also 
increases the distance between the series and the parallel 
resonances, however the necessary inductor value is too large. 
A drawback of this method is the necessity of extra inductors, 
which consume large chip area. 

Fig� 2. (a) Modified Butterworth - Van Dyke (mBVD) model of FBAR;   
(b) FBAR impedance vs. frequency when the resistances are neglected.  

The lattice filters employ two different pairs with identical 
FBARs Qa and Qb in each pair (Fig. 1(b)) and a requirement, 
similar to fpb = fsa, is valid also. The reason for this condition 
is different and it comes from the theory of LC lattice filters: 
the passband of these filters is formed by the frequency bands, 
in which the reactances of Qa and Qb have opposite signs [9]. 
Thus passband without gaps can be formed only if the series 
resonance of one from the FBAR pairs is the same as the 
parallel resonance of the other pair. To be more specific we 
will assume in the following that 

 .sbpa ff �  (1) 

The passband in the lattice filters extends theoretically in 
the whole region where the FBAR reactances have opposite 
signs, i.e. between fsa and fpb. This statement follows from the 
theory of image parameters and assumes frequency dependent 
terminating impedances. The passband is narrower when the 
terminating resistors R are constant and then the filter has two 
frequencies of maximum gain. They are the frequency fpa = fsb 
and the frequency, at which is satisfied the following 
condition 

,baZZR �2
 (2) 

where Za and Zb are the impedances of Qa and Qb (losses are 
neglected). The filter frequency response is approximately flat 
with a small fall between these two frequencies. Outside of 
them it decreases rapidly and there is significant attenuation at 
fsa and fpb. The condition (2) can be satisfied only in the region 
between fsa and fpb, where Za and Zb have opposite signs. 

Thus the distance between FBAR series and parallel 
resonances limits the passband width in the lattice filters too. 
The passband extension of the lattice filters could be done in 
the same way as in the ladder filters: technologically by 
increasing of FBAR effective coupling factor or by connecting 
small inductors in series with the resonators. 

Another way for improving the filter characteristic is to use 
series or parallel connected resonators with different 
parameters instead of the single resonators in the arms of the 
circuits in Fig. 1. Then the degree of the impedances of the 
combined resonators increases, which increases the order of 

the filter transfer function. The higher order usually gives 
steeper slopes between the passband and the stopbands and 
possibly wider passband. This method is not new: it is 
considered for the quartz-crystal filters in [9]; another 
application for ladder FBAR filters is given in [10]. 
Nevertheless there are still questions, which do not have 
complete answers yet. Some of them are: more accurate 
estimation of the parameters of the frequency response of 
connected resonators; more complete consideration of the 
effect of added resonators on the filter frequency response; the 
choice of resonance frequencies and other parameters of all 
resonators in the filter, etc. 

This paper tries to answer to some of the above questions 
related to the lattice filter architecture and to a new circuit of 
FBAR filter [11] (shown in Fig. 6(a)), which is modification 
of the lattice filter. Section II considers the change of the 
resonance frequencies of two parallel or series connected 
FBARs; then in Section III is discussed the simplest case, 
when one of Qa or Qb in Fig. 1(b) is replaced by two parallel 
FBARs; and in Section IV are given comparisons with other 
FBAR filters based on computer simulations. 

II. PARALLEL AND SERIES CONNECTED RESONATORS 
Fig. 3(a) shows two resonators, connected in parallel and 

their equivalent circuit, based on mBVD model. The loss 
resistances in mBVD model are neglected, since they are very 
small and their neglecting permits applying the theory of the 
passive LC circuit in the deriving of the properties of the 
connected resonators. Then the impedances and admittances 
of the resonators are pure imaginary, which allows to drop out 
the imaginary unit in the considerations. The resonators are 
assumed with different resonance frequencies. 

Fig. 3. (a) Two FBAR connected in parallel and their equivalent circuit;      (b) 
two FBAR connected in series and their equivalent circuit. The loss 
resistances in mBVD model are neglected. 

The first conclusion, which follows immediately from Fig. 
3(a) is that the series resonances remain the same as they are 
in Q1 and Q2. These frequencies are defined by the groups 
Lm1Cm1 and Lm2Cm2, which do not change when other elements 
are connected in parallel. The capacitors C01 and C02 can be 
united in one capacitor and then the equivalent circuit in Fig 
3(a) corresponds to Foster 2 form of a 5th order LC admittance 
[12] having zero in the origin. It has two series and two 
parallel resonances, which alternate on the frequency axis and 
the lowest is the series resonance. 

The change of the parallel resonance frequencies can be 
determined if plot together the frequency responses of the 
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admittances of both resonators in Fig. 3(a), which is done in 
Fig. 4. The total admittance Y is sum of both admittances Y1 
and Y2 and the parallel resonances of Y appear at frequencies, 
at which Y1 and Y2 have equal magnitudes and opposite signs. 
This means that they are in the frequency bands, where Y1 or 
Y2 behave like inductances, i.e. in the intervals (fs1, fp1) and 
(fs2, fp2). Thus the new locations fp1� and fp2� of the parallel 
resonances are closer to the series resonances than the 
locations of the parallel resonances in the individual 
resonators. This conclusion is valid also in the case when the 
areas, where the FBARs are equivalent to inductances, partly 
overlap (i.e. when fs2 < fp1). It is so, because fs1 and fs2 do not 
change and there is always a parallel resonance between two 
consecutive series resonances. 

Fig� 4. Plots of the frequency responses of the admittances of two parallel 
connected FBARs. 

The expressions for the admittances Y1 and Y2 are: 
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where � is the angular frequency. The zeroing of Y1 + Y2 gives 
the following equation about the new positions of the parallel 
resonance frequencies: 
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This is quite general equation with many parameters, which 
makes difficult its investigation. It can be simplified if the 
following condition is satisfied: 
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which means that both resonators have equal effective 
coupling factors. The resonators have the same maximum 
coupling factor due to technological reasons: they are located 
physically close to each other and they are manufactured by 
the same technological process. The coupling factor of 
individual resonators can be tuned by placing of insulating 
layer between the piezoelectric and one of FBAR electrodes 
[13]. However this is equivalent to connecting of a capacitor 
in series to the resonator, which reduces the coupling factor. 
Thus the above assumption is reasonable if one of the goals in 
the filter design is extending of the passband. 

If the ratio in (5) is marked by � and the ratio C02/C01 by �, 
then (4) can be transformed to 
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The solutions �p1�2 and �p2�2 and the series resonances are 
connected by the relationship as it follows 
from the Viète formulas for the polynomial roots. This 
relationship together with (5) gives . Both 
relationships give the following approximate estimation about 
the new parallel resonance frequencies: 
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This estimation gives an idea about the decreasing of the 
distances between series resonances and corresponding 
parallel resonances. Its accuracy is illustrated in Fig. 5 for the 
case when � =1.03. The general conclusion from Fig. 5 is that 
formulas (7) give the upper boundary for fp1� and the lower 
boundary for fp2� in most of the cases. This conclusion is not 
valid only when both resonators have significantly different 
parallel capacitances (� = 0.5 and less) and when the ratio 
between the series resonances is relatively large. 

Fig� 5. Dependence of the new parallel resonances from the ratio of the 
series resonances. The continuous lines give the estimation according (7). The 
parameter � = 1.03 (effective coupling factor of 7%). 

It is more convenient to consider the series connected 
resonators by using of their other equivalent circuit, consisting 
of parallel LC tank in series with a capacitor (Fig. 3(b)). It is 
based on Foster 1 form of LC impedances [12]. Fig. 3(b) 
shows immediately that the parallel resonances of the 
combination are the same as the parallel resonances of the 
individual FBARs. The series resonances change and move 
closer to the parallel resonances. The second resonator is 
equivalent to a capacitor Ceq2 in the frequency band, where the 
first resonator behaves like inductor. The capacitances Cs1 (in 
Fig. 3(b)) and Ceq2 are in series, which reduces the total series 
capacitance and gives higher first series resonance frequency, 
closer to fp1. The other series resonance moves closer to fp2 due 
to similar reason. 

The equation for the new series resonance frequencies is 
derived by zeroing of the sum Z1 + Z2, where Z1 and Z2 are the 
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FBAR impedances, i.e. Z1 = 1/Y1 and Z2 = 1/Y2. This equation 
is the same as the equation (4) for the parallel resonances of 
parallel connected FBARs. The explanation of this interesting 
peculiarity is: eq. (4) gives two solutions �1� between �s1 and 
�p1 and �2� between �s2 and �p2. When the resonators are in 
parallel, then the series resonances �s1 and �s2 are fixed and 
�1� and �2� give the new positions of the parallel resonances 
�p1� and �p2�. When the FBARs are in series, then �p1 and �p2 
do not change and �1� and �2� are the new series resonances 
�s1� and �s2�. Then it follows from (7), that series and parallel 
connection of two FBARs give approximately the same ratio 
between the higher parallel resonance and the lower series 
resonance. 

These considerations can be continued for parallel or series 
connections of few resonators. The general conclusions are: 
� the parallel connection keeps the series resonances; 
� the series connection keeps the parallel resonance; 
� the distances between corresponding pairs of series and 

parallel resonances get smaller. 

III. FILTER WITH PARALLEL CONNECTED FBARS 
The effect of the parallel connected resonators will be 

considered for the filter, proposed in [11], which basic circuit 
is shown in Fig. 6(a). The first amplifier is assumed as 
transconductance amplifier; however other options are also 
possible. The resistors Ra and Rb represent the total resistances 
at the amplifier output and could be external resistors, 
amplifier output resistances or combination of both. The 
second amplifier has zero or very low input impedance and it 
will be considered as transresistance amplifier. 

Fig� 6. (a) The basic circuit of the considered filter; (b) its modification with 
two FBARs on one of the arms; (c) location of the resonance frequencies of 
the impedances in the arms of the circuit in (b). 

If Za and Zb are the impedances of Qa and Qb respectively, 
then the filter transfer function is 
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The formula is valid also for the circuit in Fig. 6(b), which 
will be investigated below in more details. Then Za is the total 
impedance of the parallel connected Qa1 and Qa2. The transfer 
function of the lattice filter in Fig. 1(b) is given also by (8) if 
accept Ra = Rb = R and gm1rm2 = 1. Thus the most of the results 
derived below for the circuit in Fig. 6(b) are valid also for the 
lattice filter when Qa consists of two FBARs in parallel. 

The requirement for opposite signs of the reactances of both 

arms in Fig. 6(b) sets the series resonance of Zb to be equal to 
the first parallel resonance of Za and the parallel resonance of 
Zb to be the same as the second series resonance of Za (Fig. 
6(c)). The designations of the frequencies in Fig. 6(c) will be 
used in the following considerations. The resonances of Qb 
should be chosen first and then fsa2 is defined also by f3. The 
series resonance of Qa1 can be determined by iterative 
numerical technique in a way, which equalizes fpa1 to fsb. If all 
FBARs have equal effective coupling coefficients, then (7) 
gives that the ratio f4/f1 is approximately �2. The same is the 
ratio between the boundaries of the frequency band, in which 
Qa and Qb in Fig. 6(a) have reactances with opposite signs. 
Thus the extra resonator in Fig. 6(b) does not extend the 
theoretical passband bandwidth of the filter and one of the 
goals in the next considerations is to determine how to use this 
bandwidth more effectively. 

The circuit in Fig 6(b) has three frequencies of maximum 
gain, equal to gm1rm2. These frequencies are located between f1 
and f4 and they are f2, f3 and the frequency f0, at which is 
satisfied 

 . (9) baba ZZRR �

The impedance Za tends to j" at f2; the other impedance Zb 
tends to j" at f3. Then the fractional part together with RaRb in 
(8) is equal to 1 and the filter gain is equal to gm1rm2. The 
frequencies f2 and f3 are fixed by Qb and only the frequency f0 
is necessary to be determined properly. The expressions for Za 
and Zb are 
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where Ca is the sum of the parallel capacitances in the mBVD 
models of Qa1 and Qa2 and Cb is the same capacitance of Qb. It 
follows from (10) that the product ZaZb starts from 0 at f1 and 
monotonically increases to infinity when the frequency 
approaches f4 (Fig. 7(a)). Thus the product RaRb could be any 
positive value and its choice determines f0. 

Fig� 7. (a) The product ZaZb vs. frequency; (b) filter passband at different 
values of f0. The frequencies are normalized to the geometric mean of f2 and f3 
and the normalization resistance is chosen so that Ca = Cb = 1F. The 
resonators have effective coupling factor of 7% (� = 1.03), which gives f1 = 
0.97567, f2 = 0.98533, f3 = 1.0149 and f4 = 1.0351. 

The filter frequency response has failures between the f2, f3 
and f0. They depend on the distances between these 
frequencies and the choice of f0 can minimize them. The 
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intuitive guess about the proper place of f0 is between f2 and f3 
and Fig. 7(b) confirms it. Fig. 7(b) is plotted for the case when 
� = 1.03, however similar plots at different values of � 
confirm the basic conclusion: the drop of the frequency 
response between f2 and f3 is large (few dB) when f0 is outside 
of the interval (f2, f3). The optimal position of f0 is that, which 
equalizes the minima of the filter gain between f2 and f0 and f0 
and f3. The nonsymmetrical filter frequency response makes 
difficult to find exact formula for positioning of f0 and the best 
position could be done by numerical optimization. The 
variation of ZaZb between f2 and f3 is relatively large (8-9 
times) and does not require high accuracy for Ra and Rb to fix 
the desired value of f0. 

The stopband filter behavior depends also from the zeros of 
the filter transfer function. If express the impedances in (10) 
in Laplace transform domain (-�2 = s2) then the following 
equation for the zeros can be derived from (8): 
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Equation (11) is of 7th degree and contains only odd degrees 
of s – thus it has a zero in the origin. The denominator of the 
filter transfer function (8) is of 8th degree. Thus the filter has a 
zero in the origin and a zero in the infinity. Equation (11) 
depends on two parameters: the ratio c from (12); and the ratio 
� of the FBAR resonance frequencies, which defines �1, �2, 
�3 and �4. The numerical investigation for values of � 
between 1.02 and 1.035  and variation of c 
between 0.1 and 10 (in logarithmic scale) show that (11) has 
two conjugated imaginary zeros and four complex zeros for 
most of the values of c. The complex zeros have quadrant 
symmetry and they are located very close to the imaginary 
axis when c < 0.8 or c > 1.2 (quality factors of the zeros vary 
between 25 and 200). The complex zeros move far from the 
imaginary axis when c approaches unity from below or from 
above. The coefficient at highest degree of s in (11) is 0, when 
c = 1, and it can be proved, that then the lowest degree 
coefficient is also 0. Thus the filter transfer function has three 
zeros in the origin and three zeros in the infinity when c = 1. 
There is a narrow interesting region 1 < c < 1.0235 
(approximately not depending on the � when � is in the 
considered interval 1.02-1.035), in which the complex zeros 
transform into two different pairs of pure imaginary zeros. 
This region is interesting because the imaginary zeros can 
increase the stopband filter attenuation and dependence of 
their frequencies from c is shown in Fig. 8(a). Fig. 8(b) shows 
the dependence of the frequency of the pure imaginary zero, 
which exists always, from the parameter c. 

%)875.4( 2
 	�efftk

The effect of the different positions of the zeros, 
respectively of different values of c, is illustrated in Fig. 9. 
Fig. 9(a) compares the filter frequency response at three 
significantly different values of c and similar comparison is 

done in Fig. 9(b) for values of c close to 1. Evidently, the 
cases when c is far from 1 must be discarded due to the low 
stopband attenuation. Fig. 9(b) shows that variation of c by 
�5% has small effect in the region, where the attenuation does 
not exceed 25 dB. However, if higher stopband attenuation is 
required (in the range of 40 dB), then the limits are 
significantly tighter: between 1 and 1.0235. The parameter c is 
product of the ratios of the capacitances Ca and Cb and of the 
resistances Ra and Rb. A 5% tolerance is not difficult to 
achieve and more problematic is the 1% tolerance needed for 
higher attenuation. The smaller tolerance for c can be possible 
if the resistors Ra and Rb are tuned. The tuning could be done 
in different ways: by realizing of Ra and Rb as digitally 
controlled resistor banks; by controlling of the output 
impedances of the first amplifier; etc. 

Fig� 8. (a) The three imaginary zeros vs. c = �a/�b in the region, where they 
exist; (b) the frequency of the always existing imaginary zero from c. All plots 
are for � = 1.03 (effective coupling coefficient of 7%). 

Fig� 9. Comparison of stopband frequency response of the filter at different 
values of c: (a) large differences of the values; (b) values of c close to 1. The 
normalizing frequency is the center of the passband. 

The most of the conclusions above are valid also for the 
lattice filter in Fig. 1(b). There are differences only about the 
resistors Ra and Rb. They are the terminating resistors in the 
lattice filter and they must be equal. Thus, they can not be 
used for tuning the parameter c in the desired limits. Also, 
their resistance is usually prescribed and the satisfying of (9) 
should be achieved by proper choice of Ca and Cb. 

IV. SIMULATION BASED COMPARISONS WITH OTHER FBAR 
FILTERS 

The effect of the extra resonator can be seen and estimated 
better by comparison of the frequency response of the new 
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filter in Fig. 6(b) with the frequency response of the filter in 
Fig. 6(a), having one FBAR in each arm. The necessary 
frequency responses can be simulated by PSpice. The 
resonators are replaced by their mBVD models and the 
amplifiers are replaced by corresponding controlled sources. 
The values of the model elements, used in the simulations, are 
determined by using of the measured data given in [14]. These 
values are used for resonator Qb in Fig. 6(b). The resonance 
frequencies of Qa1 and Qa2 are determined by applying of the 
derived recommendations (assuming c = 1). The element 
values of Qa1 and Qa2 are determined by proportional change 
of the values of Qb in order to receive the desired resonance 
frequencies and to keep the same Q-factors of the resonators. 
This approach is applied also when determining the model 
elements of the resonators in the filters, used for comparison 
with the filter in Fig. 6(b). 

TABLE #
 PARAMETERS OF THE RESONATORS USED IN THE SIMULATIONS. 

 Lm, 
nH 

Cm, 
fF 

C0, 
pF 

Rm, 
� 

Rs, 
� 

R0, 
� 

fs, 
GHz

fp, 
GHz

Qa1 141.6 39.35 0.74 2.072 1.614 0.4 2.132 2.188
Qa2 132.15 39.35 0.74 2 1.56 0.4 2.207 2.265Fi

g.
  

6(
b)

 

Qb 69.59 78.7 1.48 1.027 0.8 0.2 2.151 2.207
Qa 70.5 79.73 1.5 1.026 0.8 0.197 2.123 2.179

Fi
g.

 
 6

 (a
) 

Qb 68.69 77.69 1.46 1.026 0.8 0.203 2.179 2.236
Qa 68.69 77.69 1.46 1.027 0.8 0.203 2.179 2.236

Fi
g.

 
 1

 (a
) 

Qb 70.5 79.73 1.5 1.027 0.8 0.197 2.123 2.179

This filter is compared with the filter in Fig. 6(a) and also 
with a ladder filter with the same number of resonators: two 
series and one shunt resonator. Both filters are designed to 
have similar passband central frequency as the filter in Fig. 
6(b). The Q-factors of all resonators are about 500 – the same 
as in [14]. The values of the resistors Ra and Rb vary between 
25� and 40� after their adjustment for every circuit 
separately in order to achieve wider passband. The parameters 
and the model elements for all resonators used in the 
simulations are summarized in Table 1. 

Fig� 10. Frequency responses of filter with three resonators (Fig. 6(b)) and 
filter with two resonators (Fig. 6(a)): (a) without including the FBAR losses; 
(b) FBAR losses are included. 

Fig� 11. Comparison of the frequency responses of the filter in Fig. 6(b) 
with the frequency responses of ladder filters with 3 FBARs and with 7 
FBARs: (a) FBAR losses are not included; (b) FBAR losses are included. 

Fig. 10 and Fig. 11 illustrate well that the extra resonator in 
Fig. 6(b) gives steeper slopes and higher attenuations in the 
stopband. The width of the passband (measured at -0.3dB 
level) for this circuit is 67.6MHz at 2.1801GHz passband 
central frequency (3.1% relative bandwidth) when the FBAR 
losses are not taken into account (Fig. 10(a)). The same data 
for Fig. 6(a) are: 49.6MHz bandwidth at 2.1622GHz central 
frequency (2.3% relative bandwidth). Thus the extra resonator 
gives a 35% extension of the relative bandwidth. However, 
this is the upper limit for the passband extension since the 
losses deteriorate more the frequency response of the filter in 
Fig. 6(b). Fig. 10(b) compares the frequency responses when 
the losses are included and the same data are: 53MHz absolute 
and 2.4% relative bandwidth at 2.1849GHz central frequency 
for the circuit in Fig. 6(b); 47.6MHz absolute and 2.2% 
relative bandwidth at 2.1632GHz central frequency for the 
circuit in Fig. 6(a). The increasing of the bandwidth is 10% 
only. This is a rather pessimistic estimation because Q-factor 
of 500 is around the lower boundary for Q [6]. The simulation 
at Q = 1000 (all resistors values in the mBVD model are 
divided by 2) gives relative bandwidths of 2.84% for Fig. 6(b) 
and 2.24% for the circuit in Fig. 6(a) – now the relative 
difference is 26%. Another advantage of the circuit with an 
extra resonator is the existence of a zero in the lower stopband 
which significantly improves the attenuation in the stopband 
right next to the passband. This can be very useful in cases 
where a transmit channel is situated right below the receive 
channel with little spacing. 

The frequency response of the circuit in Fig. 6(b) is 
compared in Fig. 11 with the frequency responses of two 
ladder filters – one with 3 resonators and one with 7 
resonators. The plots confirm the basic disadvantage of the 
ladder filters: more resonators are necessary for achieving 
reasonable stopband attenuation, but an increase in the 
number of resonators leads to narrower passband. The 
attenuation and passband data from the simulations is 
summarized in Table 2. The comparison of the considered 
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filter with lattice filter with 7 resonators shows, that the circuit 
in Fig. 6(b) has 80% wider passband and gives more than 10 
dB better stopband attenuation. 

TABLE ## 
NUMERICAL DATA EXTRACTED FROM THE SIMULATED FREQUENCY
$&�'���&��

 

 

Min. 
attenuation in 

the lower 
stopband, dB 

Min. 
attenuation in 

the upper 
stopband, dB 

Min. 
passband, 

attenuation, 
dB 

Passband 
width at 

0.3dB, MHz 

Fig 6 (a), 
w/o losses 29.14* 27.87* 0 49.6 

Fig 6 (a),  
w/ losses 29.43* 27.67* 0.82 47.6 

Fig 6 (b), 
w/o losses 38.6 35.2* 0 67.6 

Fig 6 (b),  
w/ losses 38.79 35.94* 0.916 53.1 

Fig 1 (a),     
3 resonators, 
w/o losses 

8.58 6.16 0 46.7 

Fig 1 (a),     
3 resonators, 

w/ losses 
8.14 6.52 0.54 40.5 

Fig 1 (a),     
7 resonators, 
w/o losses 

26.1 22.6 0 34.6 

Fig 1 (a),     
7 resonators, 

w/ losses 
25.4 23.03 1.13 29.5 

* The stopband attenuation is measured at frequencies which are at ±10% 
from the passband center frequency. 

V. CONCLUSIONS 
The considerations in the paper show that the replacement 

of the single FBARs in the arms of the lattice filters by two 
parallel or series connected FBARs can give better frequency 
response of the filter. The improvement is twofold: 
significantly better selectivity due to higher order of the 
transfer function and a moderate extending of the passband. It 
can be achieved when the parallel or series connected 
resonators have different parameters, satisfying some 
conditions. These conditions are investigated in details for the 
modification of the lattice circuit, proposed in [11], which 
basic version has two resonators instead of four. In order to 
avoid large increasing of the circuit complexity, two parallel 
FBARs are placed only in one of the arms. The asymmetry 
between the arms of the circuit reflects in an asymmetric 
frequency response. The considerations in the paper show that 
the modified lattice circuit from [11] proposes two basic 
advantages in the considered case: only one resonator is 
necessary to be added instead of two as it is in the basic lattice 
filter; and the tuning mechanism of modified circuit allows 
easier satisfying of the derived design conditions.  
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