PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techniki spektroskopii dielektrycznej w badaniu jakości materiałów i produktów rolniczych

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Spektroskopia dielektryczna opisuje właściwości dielektryczne próbki materiału w funkcji częstotliwości. Takimi materiałami mogą być obiekty agrofizyczne, np. gleba, owoce, warzywa, półprodukty i produkty przemysłu spożywczego, ziarno itp. Techniki spektroskopii dielektrycznej umożliwiają pomiar nieniszczący oraz nieinwazyjny obiektów agrofizycznych dając szybką ocenę ich wilgotności oraz jakości.
Rocznik
Strony
6--14
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Agilent. 2006. Basics of measuring the dielectric properties of materials, Application Note.: 1-32.
  • [2] Agilent. 2008a. Agilent 85070E Dielectric Probe Kit 200 MHz to 50 GHz-Technical Overview.
  • [3] Agilent. 2008b. Solutions for Measuring Permittivity and Permeability with LCR Meters and Impedance Analyzers, AN 1369-1, 1-28.
  • [4] Asami, K. 2002. Characterization of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science 27(8): 1617-1659.
  • [5] Bogena, H., J.A. Huisman, C. Oberdorster, H. Vereecken. 2007. Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology 344(1-2): 32-42.
  • [6] Bohigas, X., R. Amiga J-Tejada. 2008. Characterization of sugar content in yoghurt by means of microwave spectroscopy. Food Research International 41:104-109.
  • [7] Bohigas, X., J.Tejada. 2009. Dielectric properties of acetic acid and vinegar in the microwave frequencies range 1-20 GHz. Journal of Food Engineering 94:46-51.
  • [8] Castro-Giráldez, M., P.J. Fito, C. Chenoll, P. Fito. 2010. Development of a dielectric spectroscopy technique for the determination of apple (Granny Smith) maturity. Innovative Food Science & Emerging Technologies 11 (4): 749-754.
  • [9] Cataldo, A., E. Piuzzi, G. Cannazza, E. De Benedetto, L. Tarricone. 2010. Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy. Measurement 43(8): 1031-1039.
  • [10] Dorigo, W.A., W. Wagner, R. Hohensinn, S. Hahn, C. Paulik, A. Xaver, A. Gruber, M. Drusch, S. Mecklenburg, P. van Oevelen, A. Robock, T. Jackson. 2011. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst.Sci. 15(5): 1675-1698.
  • [11] Durham, G.N. 2003. Using TDR technology for earthwork compaction quality control. Signals: 1-22.
  • [12] Garcia, A., J.L. Torres, M. De Blas, A. De Francisco, R. Illanes. 2004. Dielectric Characteristics of Grape Juice and Wine. Biosystems Engineering 88(3): 343-349.
  • [13] Guo, W., S.O. Nelson, S. Trabelsi, S.J. Kays. 2007. 10-1800-MHz dielectric properties of fresh apples during storage. Journal of Food Engineering 83(4): 562-569.
  • [14] Guo, W., Y. Liu, X. Zhu, S. Wang. 2011. Temperature-dependent dielectric properties of honey associated with dielectric heating. Journal of Food Engineering 102(3): 209-216.
  • [15] Hasted, J.B. 1973. Aqueous dielectrics. Chapman and Hall, London.
  • [16] Hlaváčová, Z. 2005. Utilization of electric properties of granular and powdery materials. International Agrophysics 19:209-213.
  • [17] Janik, G. 2008. Spatial variability of soil moisture as information on variability of selected physical properties of soil. International Agrophysics 22:35-43.
  • [18] Kerr, Y.H. 2006. Soil moisture from space: Where are we? Hydrogeology Journal 15(1): 117-120.
  • [19] Kraszewski, A. 2001. Microwave aquametry: an effective tool for nondestructive moisture sensing. Subsurface Sensing Technologies and Applications 2(4): 347-362.
  • [20] Kraszewski, A., S.O. Nelson. 1989. Composite model of the complex permittivity of cereal grain. Journal of Agricultural Engineering Research 43:211-219.
  • [21] Lizhi, H., K., Toyoda, I.Ihara. 2008. Dielectric properties. of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. Journal of Food Engineering 88:151-158.
  • [22] Malicki, M.A., W. Skierucha. 1989. A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrigation Science 10(2): 153-163.
  • [23] Malicki, M. A., R. Plagge, C.H. Roth. 1996. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European Journal of Soil Science 47(3): 357-366.
  • [24] Markx, G.H., C.L. Davey. 1999. The dielectric properties of biological cells at radio-frequencies: applications in biotechnology. Enzyme and Microbial Technology 25(3-5): 161-171.
  • [25] Nelson, S.O. 1996. Review and assessment of radio-frequency microwave energy for stored-grain insect control. Transactions of the ASAE 39(4): 1475-1484.
  • [26] Nelson, S.O. 2010. Fundamentals of dielectric properties measurements and agricultural applications. Journal of Microwave Power and Electromagnetic Energy 44(2): 98-113.
  • [27] Nelson, S.O., A.K. Datta. 2001. Dielectric properties of food materials and electric field interactions. p. 69-114. In Datta, A.K., Anantheswaran, R.C. (eds.), Handbook of microwave technology for food applications. Marcel Dekker, New York.
  • [28] Nelson, S.O., S. Trabelsi. 2006. Dielectric spectroscopy of wheat from 10 MHz to 1.8 GHz. Measurement Science and Technology 17(8): 2294-2298.
  • [29] Nelson, S.O., S. Trabelsi. 2009. Dielectric properties of agricultural products and applications. In 2009 ASABE Annual International Meeting. Reno, Nevada, USA.
  • [30] Nelson, S.O., W. Forbus, K. Lawrence. 1994. Permittivities of fresh fruits and vegetables at 0.2-20 GHz. Journal of Microwave Power and Electromagnetic Energy 29(2): 81-93.
  • [31] Nelson, S.O., S. Trabelsi, S.J. Kays. 2006. Dielectric spectroscopy of honeydew melons fromn 10 MHz to 1.8 GHz for quality sensing. Transactions of the ASABE 49(6): 1977-1982.
  • [32] Nunes, A.C, X. Bohigas, J. Tejada. 2006. Dielectric study of milk for frequencies between 1 and 20 GHz. Journal of Food Engineering 76:250-255.
  • [33] Pavlik, Z., L. Fiala, R. Cerny. 2008. Determination of moisture content of hygroscopic building materials ising time domain reflectometry. Journal of Applied Sciences 8(9): 1732-1737.
  • [34] Paz, A., E. Thorin, G.C. Topp. 2010. Dielectric mixing models for water content determination in woody biomass. Wood Science and Technology 45(2): 249-259.
  • [35] Piuzzi, E., A.Cataldo, L.Catarinucci. 2009. Enhanced reflectometry measurements of permittivities and levels in layered petrochemical liquids using an "in-situ" coaxial probe. Measurement 42(5): 685-696.
  • [36] Piyasena, P., C. Dussault, T. Koutchma, H. Ramaswamy, G. Awuah. 2003. Radio Frequency Heating of Foods: Principles, Applications and Related Properties-A Review. Critical reviews in food science and nutrition 43(6): 587-606.
  • [37] Ryynänen, S. 1995. The electromagnetic properties of food materials: A review of the basic principles. Journal of Food Engineering 26(4): 409-429.
  • [38] Skierucha, W. 2000. Accuracy of soil moisture measurement by TDR technique. International Agrophysics (14): 417-426.
  • [39] Skierucha, W. 2009. Temperature dependence of time domain reflectometry-measured soil dielectric permittivity. Journal of Plant Nutrition and Soil Science 172(2): 186-193.
  • [40] Skierucha, W., A.Wilczek. 2010. A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range. Sensors 10(4): 3314-3329.
  • [41] Skierucha, W., C. Sławiński, A. Wilczek, O. Alokhina. 2010. The technical implementation of a soil moisture, salinity and temperature monitoring system in Polesie National Park and Shatsk National Nature Park. p. 299-309. In Chmielewski, T.J., Piasecki, D. (eds.), The Future of Hydrogenic Landscapes in European Biosphere Reserves. Lublin.
  • [42] Skierucha, W., R.T. Walczak, A. Wilczek. 2004. Comparison of Open-Ended Coax and TDR sensors for the measurement of soil dielectric permittivity in microwave frequencies. International Agrophysics (18): 355-362.
  • [43] Skierucha, W., B. Usowicz, R.T. Walczak, A. Wilczek A., 2006. Spatial distribution of moisture and heat properties in soil determined by ground and satellite measurements. 6th SMOS Workshop, May 15-17.2006, Technical University of Denmark, Ling by, Denmark.
  • [44] ierucha, W., A. Wilczek, M. Horyński, A. Sumorek. 2008a. Determination of electromechanical properties of dusts obtained from cereal grain.Transactions of the ASABE 51(1): 177-184.
  • [45] Skierucha, W., A. Wilczek, O. Alokhina. 2008b. Calibration of a TDR probe for low soil water content measurements. Sensors and Actuators A: Physical 147(2): 544-552.
  • [46] Topp, G.C., J.L. Davis, A.P. Annan. 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Res. 16(3): 574-582.
  • [47] Wang, S. 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering 85(2): 201-212.
  • [48] Wang, S., M. Monzon, J. A. Johnson, E.J. Mitcham, J. Tang. 2007. Industrial-scale radio frequency treatments for insect control in walnuts. Postharvest Biology and Technology 45(2): 240-246.
  • [49] Zajíček, R., L.Oppl, J.Vrba. 2008. Broadband measurement of complex permittivity using reflection method and coaxial probes. Radioengineering 17(1): 14-19.
  • [50] Zhu, X., W. Guo, X.Wu. 2012. Frequency-and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering 109:258-266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0029-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.