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DIELECTRIC AND FLEXOELECTRIC 
DEFORMATIONS INDUCED BY AC ELECTRIC FIELD  

IN INSULATING NEMATIC LAYERS 
 
 

The deformations of homeotropic nematic layers induced by ac 
electric field of frequency f were studied numerically. Two kinds of 
nematic liquid crystals with small negative dielectric anisotropy, 
∆ε < 0, were considered: (i) the non-flexoelectric nematic, (ii) the 
nematic characterised by the positive sum of flexoelectric coefficients 
e = e11 + e33 > 0. It was found that at sufficiently low frequencies, the 
deformations varied with time. The deformations of purely dielectric 
nature had the period 1/(2f). The time period of flexoelectric 
distortions was equal to 1/f. The influence of rotational viscosity and of 
thickness of the layer on the dynamics of deformations was analysed.  

 
Keywords: flexoelectricity, nematic layers, electric field induced deformations. 
 

1. INTRODUCTION  
 

The electric field induced deformations of nematic layers may have 
dielectric and flexoelectric origin since usually the nematic liquid crystals 
possess both dielectric anisotropy ∆ε and flexoelectric properties determined by 
the sum of flexoelectric coefficients e = e11 + e33 [1]. In both cases, the rise as 
well as the decay of deformations are characterised by specific rates which 
depend on the properties of the liquid crystal and on the parameters of the layer 
[2]. Therefore, if the layer is subjected to ac electric field, the director 
distribution varies periodically with time. The time evolution of the deformation 
depends on the field frequency f. In our previous paper, this effect was studied 
numerically in the homeotropically aligned nematic characterised by ∆ε = −0.7 
and e = 40 pCm−1 [3]. The flexoelectric contribution vanished above a critical 
frequency and the deformation of dielectric nature stabilized at high frequencies. 
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In the present paper, the influence of the rotational viscosity, of the thickness 
of the layer and of the flexoelectric properties on the dynamics of deformations 
is analysed. 
 

 
2. GEOMETRY  AND ASSUMPTIONS  

 
The homeotropic nematic layer of thickness d confined between two plates 

parallel to the xy plane of the coordinate system and placed at z = ±d/2 was 
investigated. The plates played the role of electrodes. Sinusoidally varying 
voltage with amplitude Um = 20 V and frequency f, ( ) ftUtU m π2sin= , was 
applied between them. The frequency was varied between 0.01 and 10 Hz. The 
interactions between nematic and boundary surfaces were determined by the 
anchoring strength parameter W equal to 20×10−6 Jm−2. A very pure electrically 
insulating nematic material was assumed. Its elastic properties were given by the 
elastic constants k11 = 6.2 ×10−12 N and k33 = 8.6 ×10−12 N. The rheological 
properties were expressed by rotational viscosity γ1 and by surface viscosity 
κ = 2.6�10−8 Nsm−1. The backflow effect was neglected. Two different sets of 
parameters responsible for interaction with electric field were taken into account. 
They represented the non-flexoelectric nematic with low negative dielectric 
anisotropy ∆ε = −0.05, and the flexoelectric nematic characterised by ∆ε = −0.05 
and by the positive sum of flexoelectric coefficients e > 0.   

 
 

3. METHOD 
 
The director distributions, n(z,t) were determined by the angles ϑ(z,t) 

measured between n and the z axis. They were obtained by numerical solving 
of the following set of equations [3]: 

− equation of balance of elastic, viscous, dielectric and flexoelectric 
torques for the bulk  
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where 1133 kkkb = and ζ = z/d;  
− two equations of balance of elastic, viscous flexoelectric and anchoring 

torques for the boundaries 
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for 21−=ζ  where 11kWd=ω   and  
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for 21+=ζ ; 
 

− the Poisson equation 
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Boundary conditions for the potential had the form: ( ) 0,5.0 =− tV  

and ( ) ( ) ftUtUtV m π2sin,5.0 == . Stationary state of the deformations was 
ensured by imposing the periodic initial conditions: ( ) ( )T,0, ζϑζϑ =  and 

( ) ( )TVV ,0, ζζ =  where T = 1/f. 
 

4. RESULTS  
 

4.1. Non-flexoelectric nematic 
  

In the case of the non-flexoelectric nematic, the director profiles ϑ(z,t) 
have typical symmetric form and can be characterised by the mid-plane angle 
ϑ(z = 0). The time evolution of the deformation is shown in Fig. 1 where the 
angle ϑ is plotted as a function of reduced time t/T and reduced coordinate ζ.  
Figure 2 shows the time dependence of the mid-plane angle for several 
frequencies. It is evident that the deformation appears and disappears twice 
during the voltage cycle T = 1/f, therefore the time period of deformation 
equals to 1/(2f). This reflects the fact that the absolute value of the voltage and 
not the sign of the voltage is essential for the deformation of purely dielectric 
nature.  
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Fig. 1. The angle ϑ plotted as a function of reduced time t/T and reduced coordinate ζ 

 for the non-flexoelectric nematic; d = 20 µm, γ1 = 0.076 Nsm−2,  f = 1 Hz 
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Fig. 2. The mid-plane angle ϑ(0,t) plotted as a function of reduced time t/T for the 

non-flexoelectric nematic; d = 20 µm, γ1 = 0.076 Nsm−2. The frequencies in Hz 
are given at the curves. The horizontal line corresponds to static deformation 

obtained for 2mUU =  
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For very low frequency, f = 0.01 Hz, the deformation has a quasi-static 
character which is illustrated in Fig. 3. The time dependent voltage U(t)  as well 
as the value of the dc threshold U1 are also plotted for comparison. It is evident 
that the deformation at the time t realized for f = 0.01 Hz (curve) is very close to 
the static deformation obtained for the dc voltage equal to U = U(t) (squares). 
The quasi-static deformation starts when the voltage exceeds some value close to 
the dc threshold. 

For higher frequencies, the time dependence of the angle takes the quasi-
sinusoidal form. The amplitude of the quasi-sinusoidal variation of ϑ(t) decays 
with frequency. This decay has an exponential form approximately. In order to 
characterize the dynamics of the deformations, the frequency fϑ is introduced. 
It is defined as the frequency at which the amplitude of ϑ(t) decays to 0.5 of its 
low frequency value. This frequency depends on the thickness of the layer as 
well as of the rotational viscosity of the nematic. (The corresponding calculations 
where performed for several sets of parameters determined by d = 10, 20 and 30 µm 
and γ1 = 0.025, 0.050, 0.076 and 0.0100 Nsm−2). Figure 4 shows  that  the frequency  
fϑ  is proportional to the quantity 1/(γ1d

2)  which is in agreement with analogous 
dependence of the time constants τ for the rise and decay of the static Frederiks 
transitions, τ ~ ηd2, where η denotes an effective viscosity [2]. 
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Fig. 3. The mid-plane angle ϑ(0,t) (left scale) for f = 0.01 Hz (continuous line) plotted as 

a function of reduced time t/T in comparison with the static deformation obtained 
at the same value of dc voltage (squares). Dashed lines: sinusoidal voltage and the 
dc threshold U1 (right scale). d = 20 µm, γ1 = 0.076 Nsm−2 
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Fig. 4. The characteristic frequencies fϑ and ft for the non-flexoelectric nematic 

and the frequency fm for e = 6 pCm−1 plotted as a function of 1/(d 2γ1) 
 
The maximum angle delays with respect to the voltage exhibiting an 

apparent inertia. The time interval δt which measures the delay is relatively short 
at f = 0.01 Hz. It increases with frequency and saturates at high frequencies. 
The frequency ft at which the half of the maximum δt is reached is another 
characteristics of the dynamics of deformation. As shown in Fig. 4, the value 
of ft is also proportional to 1/(γ1d

2) which confirms the role of rotational 
viscosity and thickness. When the frequency reaches sufficiently high values, 
the deformation tends to the stationary form corresponding to the rms value 
of the voltage 2mUU =  [4]. 

 
 

4.2. Flexoelectric nematic 
  

The flexoelectric nematic is characterised by the sum of the flexoelectric 
coefficients e. The calculations where performed for e = 6, 18 and 30 pCm−1. 
The director profiles ϑ(ζ,t) are asymmetrical as shown in Fig. 5 where the angle 
ϑ is plotted as a function of the reduced time t/T and reduced coordinate ζ. The 
deformation is characterised by the mid-plane angle ϑ(ζ = 0) and by the 
boundary angle ϑ(ζ = −0.5). The time evolution of the deformation is shown in 
Figs. 6 and 7 for ζ = 0 and ζ = −0.5 respectively. It is evident that the time 
period of deformation equals to the voltage cycle T = 1/f due to flexoelectric 
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contribution which is a linear effect with respect to the electric field [5]. The 
flexoelectric torques manifest themselves in the subsurface deformations shown 
in Fig. 7. At low frequencies, the dielectric contribution gives rise to two 
maxima at the boundaries. Their magnitudes are different due to the flexoelectric 
torques. At  ζ = −0.5, the lower maximum appears in the first half of the voltage 
period and a higher maximum arises in the second half. However, the first 
maximum decreases when the frequency grows up and at sufficiently high 
frequency it merges with the first minimum. This means that the subsurface 
deformation is determined by the linear flexoelectric effect (curve for 10 Hz in 
Fig. 7). One may define a characteristic frequency fm at which the difference 
between the first maximum and the first minimum decreases to half of its initial 
value. This frequency characterises the dynamics of the dielectric contribution. 
It is proportional to the quantity 1/(γ1d

2) as shown in Fig. 4. The frequency at 
which first maximum vanishes decreases with increasing e.  
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Fig. 5. The angle ϑ plotted as a function of reduced time t/T and reduced coordinate ζ for 
the flexoelectric nematic; e = 30 pCm−1,  d = 20 µm, γ1 = 0.076 Nsm−2, f = 0.1 Hz 
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5.  SUMMARY  
 

The above results show that in the considered layers containing nematic 
liquid crystals with rather small dielectric anisotropy, the deformation of 
dielectric nature becomes static at lower frequency than the deformation 
of flexoelectric origin. The dynamics of the dielectric deformations is governed 
by the quantity γ1d

2 in agreement with properties of the time constants 
responsible for the onset and decay of the Frederiks transitions.  

The flexoelectric deformations can be caused by the torques in the bulk 
which are due to the gradient of the electric field and by the surface torques 
which depend on the electric field strength acting on the boundaries. In the 
considered case of insulating nematic, the field gradients are very small. The 
surface flexoelectric torque  at the positive electrode  are destabilizing,  whereas 
the torque at the negative electrode quenches the deformation. The deformations 
in the bulk have dielectric origin and are remarkable in the case of e = 6 pCm−1. 
In the case of e = 30 pCm−1, the deformations are dominated by the director 
orientations forced at the boundaries by the surface flexoelectric torques. 
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Fig. 6. The mid-plane angle ϑ(0,t) plotted as a function of reduced time t/T for the 

flexoelectric nematic; e = 6 pCm−1, d = 20 µm, γ1 = 0.076 Nsm−2. The frequencies 
in Hz are given at the curves 
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Fig. 7. The boundary angle ϑ(−0.5,t)  plotted as a function of reduced time t/T for the 

flexoelectric nematic; e = 6 pCm−1, d = 20 µm, γ1 = 0.076 Nsm−2. The frequencies 
in Hz are given at the curves 
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DIELEKTRYCZNE I FLEKSOELEKTRYCZNE 
ODKSZTAŁCENIA WARSTW NEMATYCZNYCH 

WYWOŁANE ZMIENNYM POLEM ELEKTRYCZNYM 
 

Streszczenie 
 

Zbadano numerycznie odkształcenia homeotropowych warstw nematyków 
wywołane zmiennym polem elektrycznym o cz�sto�ci f. Rozpatrzono dwa 
rodzaje nematycznego ciekłego kryształu o małej anizotropii dielektrycznej  
∆ε < 0:  nematyk pozbawiony wła�ciwo�ci fleksoelektrycznych oraz nematyk 
scharakteryzowany dodatni� sum� współczynników fleksoelektrycznych  
e = e11 + e33 > 0. Stwierdzono, �e przy dostatecznie niskiej cz�sto�ci 
odkształcenie zmienia si� okresowo z czasem. Okres deformacji czysto 
dielektrycznych wynosi 1/(2f), a deformacji o naturze fleksoelektrycznej 
równy jest 1/f. Przeanalizowano wpływ lepko�ci rotacyjnej i grubo�ci warstwy 
na dynamik� odkształce�.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


