PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wstępne badania degradacji barwnika Acid Green 16 w systemie H202/wiórki stalowe

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Preliminary tests of degradation of dye Acid Green 16 in the H2O2/swarf system
Języki publikacji
PL
Abstrakty
PL
Przeprowadzono badania degradacji barwnika Acid Green 16 za pomocą zmodyfikowanego odczynnika Fentona w dwóch reaktorach przepływowych, w których wykorzystano wiórki stalowe jako alternatywne źródło jonów żelaza. Reaktory różniły się wysokością i objętością zastosowanego wypełnienia z wiórków. Nadtlenek wodoru wprowadzano zarówno przed reaktorami (wariant I), jak i za reaktorami (wariant II). W poszczególnych seriach badań różnicowano dawki H2O2 (od 75 do 1250 mg/dm3), początkowe wartości pH ścieków (pH 3 i 4,5) oraz stopień ich alkalizacji (pH 9 i 12) po procesie Fentona. Porównano również efektywność zmodyfikowanego i klasycznego odczynnika Fentona w odbarwianiu badanych ścieków. Wykazano, że możliwe jest skuteczne zastąpienie klasycznego odczynnika Fentona modyfikacją z wiórkami stalowymi w systemie przepływowym do oczyszczania ścieków barwnych. W systemie przepływowym istotny wpływ na wielkość dawki H2O2 wymaganej do odbarwienia ścieków miało miejsce wprowadzania nadtlenku wodoru, początkowa wartość pH ścieków, a także czas kontaktu ścieków z wiórkami w reaktorze. Znacznie lepsze efekty odbarwiania uzyskiwano dla początkowego pH 3 w porównaniu do pH 4,5. Duże znaczenie odgrywał też stopień końcowej alkalizacji ścieków po procesie Fentona. Efektywność odbarwiania ścieków przy korekcie do pH 9 wynosiła 98,7 ÷ 99,8% oraz 99,8 ÷ 99,9% przy korekcie do pH 12.
EN
A modified Fenton process, using heterogeneous catalyst (swarf) as an alternative source of iron ions, was investigated for degradation of dye Acid Green 16. The experiments were carried out in two continuously-flow reactors consisting a glass column (diameter of 2.48 cm) filled with swarf. The reactors differed in bed height (3.5 and 7 cm in the first and the second reactor respectively). The swarf was made during metal sawing and the particle size of swarf was in the range of 1.2 ÷ 4.0 mm. H2O2 was dosed both before (variant I) and after (variant II) the reactors. The effect of H2O2 dosage (from 75 to 1250 mg/dm3), initial pH (3 and 4.5) and pH alkalisation after Fenton's process (pH 9 and 12) on colour removal efficiency was examined. Moreover, the effectiveness of the modified and classical Fenton's process was compared. The modified continuous Fenton process was found to be very efficient for discoloration of simulated wastewater containing 100 mg/dm3 Acid Green 16. The experimental results clearly showed that swarf could be used to replace iron salts as a catalyst in this modification. Such a system can work effectively both where H2O2 is dosing into the wastewater before and after the reactors. At the approximate process's parameters (dosage of H2O2 and initial pH) there were obtained similar effects of Acid Green 16 degradation in both classical and modified Fenton process. The dosage of H2O2, volume of swarf bed, initial pH and the place of H2O2 dosing, had fundamental impact on discoloration efficiency in the modified Fenton process. Much better results of colour removal (98.7 ÷ 99.8%) were achieved when initial pH value equalled 3.0. At initial pH value of 4.5 the results were worse (48.8 ÷ 80.6%). A very important factor was also the pH value after Fenton process. The increase of pH from 9 to 12 significantly improved the discoloration efficiency, mainly due to better precipitate iron compounds, which caused a specific colour of wastewater. It was also found, that in the case where H2O2 was added into the wastewater before reactor, it is possible to increase the efficiency of colour removal in significant way by leaving effluent after Fenton process for longer time without neutralisation. It made possible, in some range, to decrease dosages of H2O2, and the same lowering costs of wastewater treatment. The obtained results encourage to further research on this subject in order to more precise evaluation of particular parameters of continuously-flow reactor and consequently to minimize costs and maximize treatment efficiency. The presented modification of Fenton process is relatively economical because the swarf can be used as a discard material e.g. from machining.
Rocznik
Strony
35--49
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Instytut Inżynierii Wody i Ścieków
Bibliografia
  • [1] Ledakowicz S., Solecka M., Zastosowanie wybranych metod fizyko-chemicznych i biologicznych do oczyszczania ścieków włókienniczych, Gaz, Woda i Technika Sanitarna 2001, 3, 103-107.
  • [2] Robinson T., Chandran B., Nigam P., Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water Research 2002, 36, 11, 2824-2830.
  • [3] Wang S., Li H. T., Xie S. J, Liu S. L., Xu L. Y., Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment, Chemosphere 2006, 65, 1, 82-87.
  • [4] Walker G. M., Weatherley L. R., Fixed bed adsorption of acid dyes onto activated carbon, Environmental Pollution 1998, 99, 1, 133-136.
  • [5] Al-Degs Y., Khraisheh M. A. M., Allen S. J., Ahmad M. N., Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent, Water Research 2000, 34, 3, 927-935.
  • [6] Robinson T., McMullan G., Marchant R., Nigam P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology 2001, 77, 3, 247-253.
  • [7] Muthukumar M., Sargunamani D., Senthilkumar M., Selvakumar N., Studies on decolouration, toxicity and the possibility for recycling of acid dye effluents using ozone treatment, Dyes and Pigments 2005, 64, 1, 39-44.
  • [8] Akbari A., Remigy J. C., Aptel P., Treatment of textile dye effluent using a polyamide-based nanofiltration membrane, Chemical Engineering and Processing 2002, 41, 7, 601-609.
  • [9] Jiraratananon R., Sungpet A., Luangsowan P., Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt, Desalination 2000, 130, 2, 177-183.
  • [10] Vandevivere P. C., Bianchi R., Verstraete W., Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies, Journal of Chemical Technology and Biotechnology 1998, 72, 4, 289-302.
  • [11] Zee P. P., Villaverde S., Combined anaerobic-aerobic treatment of azo dyes - A short review of bioreactor studies, Water Research 2005, 39, 8, 1425-1440.
  • [12] Filipowska U., Proces usuwania barwy z wykorzystaniem chityny trocin i popiołów, Gaz, Woda i Technika Sanitarna 2006, 7-8, 42-45.
  • [13] Shu H.-Y., Hsieh W.-P., Treatment of dye manufacturing plant effluent using an annular UV/H2O2 reactor with multi-UV lamps, Separation and Purification Technology 2006, 51, 3, 379-386.
  • [14] Shu H.-Y., Chang M.-C, Hsieh W.-P., Remedy of dye manufacturing process effluent by UV/H2O2 process, Journal of Hazardous Materials B 2006, 128, 1, 60-66.
  • [15] Tang C., Chen V., The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor, Water Research 2004, 38, 11, 2775-2781.
  • [16] Deng N., Luo P., Wu P., Xiao M., Wu X., Discoloration of aqueous reactive dye solutions in the UV/Fe° system, Water Research 2000, 34, 8, 2408-2411.
  • [17] Kim T.-H., Park C., Yang J., Kim S., Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, Journal of Hazardous Materials B 2004, 112, 1-2, 95-103.
  • [18] Barbusiński K., Majewski J., Discoloration of azo dye Acid Red 18 by Fenton reagent in the presence of iron powder, Polish Journal of Environmental Studies 2003, 12, 2, 151-155.
  • [19] Fenton H. J. H., Oxidation of tartaric acid in presence of iron, Journal Chemical Society 1894, 65, 899-910.
  • [20] Haber F., Weiss J., The catalytic decomposition of hydrogen peroxide by iron salts, Proceedings of the Royal Society London A, 1934, 147, 861, 332-351.
  • [21] Barb W. G., Baxendale J. H., George P., Hargrave K. R., Reactions of ferrous and ferric ions with hydrogen peroxide. Part I. - The ferrous ion reaction, Transactions of the Faraday Society 1951, 47, 462-500.
  • [22] Barb W. G., Baxendale J. H, George P., Hargrave K. R., Reactions of ferrous and ferric ions with hydrogen peroxide. Part II. - The ferric ion reaction, Transactions of the Faraday Society 1951, 47, 591-616.
  • [23] Bray W. C., Gorin M. H., Ferryl ion, a compound of tetravalent iron, Journal of American Chemical Society 1932, 54, 2124-2125.
  • [24] Nogueira R. F. P., Guimarães J. R., Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system, Water Research 2000, 34, 3, 895-901.
  • [25] Bauer R., Fallmann H., The photo-Fenton oxidation - a cheap and efficient wastewater treatment method, Research on Chemical Intermediates 1997, 23, 4, 341-354.
  • [26] Brillas E., Calpe J. C., Casado J., Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Research 2000, 34, 8, 2253-2262.
  • [27] Huang Y-H., Chou S., Perng M-G., Huang G-H., Cheng S-S., Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method, Water Research 1999, 39, 10, 145-149.
  • [28] Fajerwerg K., Foussard J. N., Perrard A., Debellefontaine H., Wet oxidation of phenol by hydrogen peroxide: the key role of pH on the catalytic behaviour of Fe-ZSM5, Water Science and Technology 1997, 35, 4, 103-110.
  • [29] Al-Hayek N., Doré M, Oxidation of phenols in water by hydrogen peroxide on alumina supported iron, Water Research 1990, 24, 8, 973-982.
  • [30] Lucking F., Köser H., Jank M., Ritter A., Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research 1998, 32, 9, 2607-2614.
  • [31] Barbusiński K., Intensyfikacja procesu oczyszczania ścieków i stabilizacji osadów nadmiernych z wykorzystaniem odczynnika Fentona, Zeszyty Naukowe Pol. Śląskiej, nr 50, Gliwice 2004.
  • [32] Barbusiński K., The modified Fenton process for decolorization of dye wastewater, Polish Journal of Environmental Studies 2005, 14, 3, 281-285.
  • [33] Karta charakterystyki barwnika Acid Green 16. Zakłady Boruta-Kolor w Zgierzu.
  • [34] Dadał A., Modyfikacja reakcji Fentona z nadwęglanem sodu. Praca magisterska, Politechnika Śląska, Instytut Inżynierii Wody i Ścieków, Gliwice 2006.
  • [35] Barbusiński K., Główkowska J., Tomys K., Coke plant wastewater treatment by Fenton reagent, Archives of Environmental Protection 2006, 32, 3, 21-28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0018-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.