PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innowacyjne rozwiązania sekwencyjnych reaktorów porcjowych stosowane w oczyszczaniu ścieków

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Innovative types of sequencing batch reactors used in wastewater treatment
Języki publikacji
PL
Abstrakty
PL
W artykule podjęto się sklasyfikowania niekonwencjonalnych rozwiązań sekwencyjnych reaktorów porcjowych oraz określono, jakie efekty oczyszczania można osiągnąć w zależności od zastosowanego wariantu. Autorzy zaproponowali podział sekwencyjnych reaktorów porcjowych, uwzględniając konfigurację procesów oraz rodzaj stosowanej biomasy. W pracy przedstawiono szereg nowatorskich koncepcji reaktorów SBR. Zaprezentowano systemy CFSBR i SFBR oraz MSBR, służące do realizacji nietypowego oczyszczania ścieków. Dokonano przeglądu systemów porcjowych z biomasą granulowaną GSBR oraz z błoną biologiczną SBBR. Omówiono zarówno grupę reaktorów z biomasą wspomaganą zeolitami i węglem aktywnym, jak również grupę sekwencyjnych reaktorów membranowych SBMBR. Przedstawiona w pracy systematyka nowatorskich systemów SBR daje możliwość ich szerokiego wyboru w zależności od rodzaju i składu ścieków, wielkości układu oraz wymaganej jakości odpływu. Na podstawie analizy danych zawartych w piśmiennictwie można stwierdzić, że technologię biologicznego sekwencyjnego oczyszczania ścieków można łatwo poprawić ze względu na jej elastyczność. Modyfikacja konwencjonalnego reaktora SBR poprzez zastosowanie przedstawionych w pracy rozwiązań pozwala na modernizację istniejących już oczyszczalni, których sprawność jest za niska w stosunku do bieżących potrzeb.
EN
The studies conducted into the improvement in wastewater treatment processes efficiency and optimization in sequential systems cause a continual evolution of applied methods. Recently the classical sequencing batch reactors have themselves become the object of many modifications in which an increase in the efficiency of pollution removal from wastewater or only an intensification of individual processes like nitrification, denitrification are the aim. In this paper innovative types of sequencing batch reactor were presented. With regard to the inflow and outflow characteristic of wastewater, Continuous Flow Sequencing Batch Reactors as well as Sequencing Fed-Batch Reactors were distinguished. MSBR reactors were also described considering their application in the atypical wastewater treatment with the use of a coagulation or filtration processes. A group of sequencing reactors GSBR with an aerobic granular sludge were presented. The article contains an extensive review of Sequencing Batch Biofilm Reactors with moving bed, fixed bed and periodically submerged fixed bed. A group of reactors with zeolites and activated carbon addition to biomass as well as membrane reactors SBMBR were described. The systematics of the new SBR systems were introduced in this paper, and possibility of their wide choice depending on wastewater type and composition, sizes of system and required quality of outflow was discussed. The selection of parameters and choice of modified system will be determined by the achievement of the anticipated effects of wastewater treatment. On the basis of information contained in literature it has been possible to affirm that biological sequential wastewater treatment technology can be easily improved thanks to its elasticity. The modification of a conventional SBR using the solutions introduced in this paper allows to consider modernization of existing WWTP-s whose efficiencies are too low in relation to current needs.
Rocznik
Strony
431--453
Opis fizyczny
Bibliogr. 111 poz.
Twórcy
  • Politechnika Rzeszowska, Wydział Budownictwa i Inżynierii Środowiska, Katedra Inżynierii i Chemii Środowiska
Bibliografia
  • [1] Mańczak M., Podział reaktorów okresowego działania - SBR, Przegląd Komunalny 2004, 7, 35-38.
  • [2] Teichgräber B., Sekwencyjne reaktory porcjowe - Projektowanie i zastosowanie, tłum. A. Michalskiej, GWiTS 1998, 12, 522-531.
  • [3] Wilderer P. A., Irvine R. L., Goronszy M. C., Sequencing batch reactor technology, Scientific and Technical Report No. 10, IWA Publishing, London 2001.
  • [4] Styka W., Banaś J., Rozwój technologii SBR w ostatnim 20-leciu, I Kongres Inżynierii Środowiska, Referaty problemowe, Monografie Komitetu Inżynierii Środowiska PAN 2002, 12, 363-390.
  • [5] Klimiuk E., Łebkowska M., Biotechnologia w ochronie środowiska, Wydawnictwo Naukowe PWN, Warszawa 2003.
  • [6] Podedworna J., Przegląd i ocean stanu badań nad oczyszczaniem ścieków w sekwencyjnych reaktorach porcjowych, Inż. i Ochr. Środ. 2004, 7, 2, 227-247.
  • [7] Artan N., Orhon D., Mechanism and Design of Sequencing Batch Reactors for Nutrient Removal Scientific and Technical Report No. 19, IWA Publishing, London 2005.
  • [8] Heidrich Z., Witowski A., Urządzenia do oczyszczania ścieków, Wydawnictwo Seidel Przywecki, Warszawa 2005.
  • [9] Tomaszek J. A., Azot i fosfor w środowisku i technologiach środowiskowych, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2006.
  • [10] Heidrich Z., Przepływowe, czy sekwencyjne (SBR) reaktory biologiczne z osadem czynnym, Seminarium nt. Technologia oczyszczania ścieków w reaktorach SBR - teoria i praktyka, Wydawnictwo Seidel Przywecki, Warszawa, 10 grudnia 2007.
  • [11] Lin S. H., Cheng K. W., A new sequencing batch reactor for treatment of municipal sewage wastewater for agricultural reuse, Desalination 2001, 133, 41-51.
  • [12] de Villiers G. H., Abattoir effluent treatment and protein production: Full-scale application, Water S.A. 2000, 26, 4, 559-562.
  • [13] Lee Y. W., Kim Y. J., Chang N. J., Lee B. H., Development of sequencing batch reactor with step feed and recycle, Wat. Sci. Tech. 2007, 55, 1-2, 477-484.
  • [14] Kiso Y., Jung Y.-J., Park M.-S., Wang W., Shimase M., Yamada T., Min K.-S., Coupling of sequencing batch reactor and mesh filtration: Operational parameters and wastewater treatment performance, Wat. Res. 2005, 39, 4887-4898.
  • [15] Wang W., Jung Y.-J., Kiso Y., Yamada T., Min K.-S., Excess sludge reduction performance of an aerobic SBR process equipped with a submerged mesh filter unit, Process Biochem. 2006, 41, 745-751.
  • [16] Rezaee A., Khavanin A., Ansari M., Treatment of work camp wastewater using a sequencing batch reactor followed by a sand filter, American J. Enyiron. Sci. 2008, 4, 4, 342-346.
  • [17] Mahvi A. H., Mesdaghinia A. R., Karakani F., Feasibility of continuous flow sequencing batch reactor in domestic wastewater treatment, American J. App. Sci. 2004, l, 4, 348-353.
  • [18] Wu W., Timpany P., Dawson B., Simulation and applications of a novel modified SBR system for biological nutrient removal, Wat. Sci. Tech. 2001, 43, 3, 215-222.
  • [19] Szewczyk K. W., Shao Y., Oczyszczanie ścieków w sekwencyjnym reaktorze półciągłym, Inż. i Ap. Chem. 2005, 4, 103-104.
  • [20] Szewczyk K. W., Shao Y., Modelling of wastewater treatment in a sequencing fed-batch reactor, Inż. Chem. i Proc. 2006, 27, 1, 35-46.
  • [21] Moreno-Andrade I., Buitrón G., Betancur M. J., Moreno J.A., Optimal degradation of inhibitory wastewater in a fed-batch bioreactor, J. Chem. Technol. Biotechnol. 2006, 81, 4, 713-720.
  • [22] Beun J .J., Hendriks A., van Loosdrecht M. C. M., Morgenroth E., Wilderer P. A., Heijnen J. J., Aerobic granulation in a sequencing batch reactor, Wat. Res. 1999, 33, 10, 2283-2290.
  • [23] Beun J .J., van Loosdrecht M. C .M., Heijnen J J., Aerobic granulation, Wat. Sci. Tech. 2000, 41, 4-5, 41-48.
  • [24] Beun J J., van Loosdrecht M C .M., Heijnen J. J., Aerobic granulation in a sequencing batch air-lift reactor, Wat. Res. 2002, 36, 702-712.
  • [25] de Kreuk M. K., Picioreanu C., Hosseini M., Xavier J .B., van Loosdrecht M .C .M., Kinetic model of a granular sludge SBR - influences on nutrient removal, Biotechnol. Bioeng. 2007, 97, 4, 801-815.
  • [26] Torregrossa M., Di Bella G., Viviani G., Gnoffo A., Performances of a granular sequencing batch reactor (GSBR), Wat. Sci. Tech. 2007, 55, 8-9, 125-133.
  • [27] Yilmaz G., Lemaire R., Keller J., Yuan Z., Simultaneous nitrification, denitrification and phosphorus removal from nutrient-rich industrial wastewater using granular sludge, Biotechnol. Bioeng. 2007, Papers in Press.
  • [28] Wang F., Yang F. L., Liu Y. H., Zhang X. W., Cultivation of aerobic granules for simultaneous nitrification and denitrification by seeding different inoculated sludge, J. Environ Sci. China, 2005, 17, 2, 268-270.
  • [29] Cassidy D. P., Belia E., Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge, Wat. Res. 2005, 39, 19, 4817-4823.
  • [30] Schwarzenbeck N., Borqes J. M., Wilderer P. A., Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor, Appl. Microbiol. Biotechnol. 2005, 66, 6, 711-718.
  • [31] Lu S., Ji M., Wang J. F., Wei Y. J., Simultaneous phosphorus and nitrogen removal of domestic sewage with aerobic granular sludge SBR, Huan. Jing. Ke. Xue. 2007, 28, 8, 1687-1692.
  • [32] Wang S. G., Liu X. W., Gong W. X, Gao B. Y., Zhang D. H., Yu H. Q., Aerobic granulation with brewery wastewater in a sequencing batch reactor, Bioresour. Technol. 2007, 98, 11, 2142-2147.
  • [33] Inizan M., Freval A., Cigana J., Meinhold J., Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment, Wat. Sci. Tech. 2005, 52, 10-11, 335-343.
  • [34] Yi S., Zhuang W. Q., Wu B., Tay S. T., Tay J. H., Biodegradation of p-nitrophenol by aerobic granules in a seąuencing batch reactor, Environ. Sci. Technol. 2006, 40, 7, 2396-2401.
  • [35] Liu Y., Xu H., Yang S.-F., Tay J.-H., A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules, J, Biotechnol. 2003, 102, 3, 233-239.
  • [36] Xu H., Liu Y., Mechanisms of Cd2+, Cu2+ and Ni2+ biosorption by aerobic granules, Sep. Pur. Technol. 2008, 58, 3, 400-411.
  • [37] Li J., Garny K., Neu T., He M., Lindeblatt C., Horn H., Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors, Wat. Sci. Tech. 2007, 55, 8-9, 403-411.
  • [38] Żubrowska-Sudoł M., Zastosowanie złoża ruchomego (moving bed) w technologii oczyszczania ścieków, GWiTS 2004, 7-8, 266-269.
  • [39] Garzón-Zéñ M. A., González-Martínez S., Biological phosphate and nitrogen removal in a biofilm sequencing batch reactor, Wat. Sci. Tech. 1996, 34, 1-2, 293-301.
  • [40] Arnz P., Arnold E., Wilderer P.A., Enhanced biological phosphorus removal in a semi full-scale SBBR, Wat. Sci. Tech. 2001, 43, 3, 167-174.
  • [41] Podedworna J., Żubrowska-Sudoł M., Wstępne doświadczenia w usuwaniu azotu i fosforu w sekwencyjnym reaktorze porcjowym ze złożem zawieszonym, GWiTS 2001, 11, 398-405.
  • [42] Gieseke A., Arnz P., Amann R., Schramm A., Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor- and microscale investigations, Wat. Res. 2002, 36, 501-509.
  • [43] Pastorelli G., Canziani R., Pedrazzi L., Rozzi A., Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors, Wat. Sci. Tech. 1999, 40, 4-5, 169-176.
  • [44] Helness H., Ødegard H., Biological phosphorus and nitrogen removal in a sequencing batch moving bed biofilm reactor, Wat. Sci. Tech. 2001, 43, l, 233-240.
  • [45] Żubrowska-Sudoł M., Podedworna J., Stężenie tlenu rozpuszczonego a efektywność eliminacji związków węgla, azotu i fosforu w sekwencyjnym reaktorze porcjowym ze złożem ruchomym (MBSBBR), GWiTS 2004, 2, 62-69.
  • [46] Podedworna J., Żubrowska-Sudoł M., Efektywność oczyszczania ścieków komunalnych w reaktorze SBR ze złożem ruchomym. Seminarium nt. Technologia oczyszczania ścieków w reaktorach SBR - teoria i praktyka, Wydawnictwo Seidel Przywecki, Warszawa, 10 grudnia 2007.
  • [47] Helness H., Odegaard H., Biological phosphorus removal in a sequencing batch moving bed biofilm reactor, Wat. Sci. Tech. 1999, 40, 4-5, 161-168.
  • [48] Morgenroth E., Wilderer P.A., Controlled biomass rermoval - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems, Wat. Sci. Tech. 1999, 39, 7, 33-40.
  • [49] Shin H-S., Park H-S., Enhanced nutrient removal in porous biomass carrier sequencing batch reactor (PBCSBR), Wat. Sci. Tech. 1991, 23, 4-6, 719-728.
  • [50] Kim H., Rhu D., Hwang H., Choi E., Performance of a hybrid SBR with fixed bed and suspended growth, Wat. Sci. Tech. 2003,48, 11-12, 309-317.
  • [51] Manoj Kumar B., Chaudhari S., Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source, Wat. Sci. Tech. 2003,48, 3, 73-79.
  • [52] Sirianuntapiboon S., Jeeyachok N., Larplai R., Sequencing batch reactor biofilm system for treatment of milk industry wastewater, J. Environ. Manag. 2005, 76, 177-183.
  • [53] Sirianuntapiboon S., Yommee S., Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR), J. Environ. Manag. 2006, 78, 149-156.
  • [54] Cho B-C., Chang C-N., Liaw S-L., Huang P-T., The feasible sequential control strategy of treating high strenght organic nitrogen wastewater with sequencing batch biofilm reactor, Wat. Sci. Tech. 2001, 43, 3, 115-122.
  • [55] Müller N., Implementing biofilm carriers into activated sludge process - 15 years of experience, Wat. Sci. Tech. 1998, 37, 9, 167-174.
  • [56] Ødegard H., Gisvold B., Strickland J., The influence of carrier size and shape in the moving bed biofilm process, Wat. Sci. Tech. 2000, 41, 4-5, 383-391.
  • [57] Valvidia A., González-Martinez S., Wilderer P. A., Biological nitrogen removal with three different SBBR, Wat. Sci. Tech. 2007, 55, 7, 245-254.
  • [58] Chandrasekhara Rao N., Venkata Mohan S., Muralikrishna P., Sarma P. N., Treatment of composite chemical wastewater by aerobic GAC-biofilm sequencing batch reactor (SBGR) J. Hazard. Mater. 2005, B124, 59-67.
  • [59] Jung J. Y., Son D. H., Yeom I. T., Chung Y. C., The role of zeolite in the nitrogen removal processand treatment of ammonium-rich wastewater using sequencing batch biofilm reactor (SBBR), Zeolite '06 - 7th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites, Sorocco, New Mexico USA, 16-21 July 2006. R. S. Bowman and S. E. Delap (Eds.), Book of Abstracts, 146-147.
  • [60] Loukidou M. X., Zouboulis A. I., Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment, Enyiron. Pollut. 2001, 111, 273-281.
  • [61] Rovatti M., Nicolella C., Converti A., Ghigliazza R., di Felice R., Phosphorus removal in fluidized bed biological reactor (FBBR), Wat. Res. 1995, 29, 2627-2634.
  • [62] Brenner A., Ben-Shushan N., Siegel M. H., Merchuk J. C., Pilot plant performance and model calibration of a sequencing batch air-lift reactor, Wat. Sci. Tech. 1997, 35, 1, 121-128.
  • [63] Di Iaconi C., Lopez A., Ramadori R., Di Pinto A. C., Passino R., Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR), Wat. Res. 2002, 36, 2205-2214.
  • [64] Li J., Peng Y., Gu G., Wei S., Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater, Front. Environ. Sci. Engin. China 2007, 1, 2, 246-250.
  • [65] Brinke-Seiferth S., Behrendt J., Sekoulov L, The biofilm filter sequencing batch reactor (BFSBR), Wat. Sci. Tech. 1999, 39, 8, 77-83.
  • [66] Kern-Jespersen J. P., Henze M., Strube R., Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed film reactor, Wat. Res. 1994, 28, 5. 1252-1255.
  • [67] Buitrón G., Soto G., Vite G., Moreno J. Strategies to enhance the biodegradation of toxic compounds using discontinuous processes, Wat. Sci. Tech. 2001, 43, 3, 283-290.
  • [68] Buitrón G., Melgoza R.M., Jiménez L, Pharmaceutical wastewater treatment using an anaerobic/anaerobic sequencing batch biofilter J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 10, 2077-2088.
  • [69] Venkata Mohan S., Chandrasekhara Rao N., Sarma P. N., Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR), J. Hazard. Mater. 2007, 144, 108-117.
  • [70] Di Iaconi C., Ramadori R., Lopez A., Passino R., Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor, Biochem. Eng. Journal 2006,30,152-157.
  • [71] Di Iaconi C., Ramadori R., Lopez A., Combined biological and chemical degradation for treating a mature municipal landfill leachate, Biochem. Eng. Journal 2006, 31, 118-124.
  • [72] Castillo P. A., González-Martínez S., Tejero I., Observations Turing start-up of biological phosphorus removal in biofilm reactors, Wat. Sci. Tech. 2000, 41, 4-5, 425-432.
  • [73] Wang B., Li J., Wang L., Nie M., Li J., Mechanism of phosphorus removal by SBR submerged biofilm system, Wat. Res. 1998, 32, 9, 2633-2638.
  • [74] Li J., Xing X-H., Wang B-Z., Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR), Biochem. Eng. Journal 2003, 16, 279-285.
  • [75] Zhang Z., Zhou J., Wang J., Guo H., Tong J., Integration of nitrification and denitrifying dephosphatation in airlift loop batch biofilm reactor, Process Biochem. 2006, 41, 599-608.
  • [76] Terada A., Yamamoto T., Tsuneda S., Hirata A., Sequencing batch membrane biofilm reactor for simultaneous nitrogen and phosphorus removal: Novel application of membrane-aerated biofilm, Biotechnol. Bioeng. 2006, 94, 4, 730-739.
  • [77] Vetter R. L., Pehrson R., Hubbell S. B., IFAS media in a sequencing batch reactor for nitrification and denitrification of high strength wastewater, Proceedings of the WEFTEC 2006 - 79th Annual Technical Exhibition and Conference, Dallas, 21-25.10.2006.
  • [78] Tran H.-T., Kim D.-H., Jia Y.-H., Oh S.-J., Ahn D.-H., A study on start-up operation of fixedbed biofilm sequencing batch reactor (FbSBR) for Piggery Wastewater Treatment, J. Ind. Eng. Chem. 2007, 13, 6, 985-991.
  • [79] Tengrui L., Al-Harbawi A. F., Bo L. M., Jun Z., Long X. Y., Characteristics of nitrogen removal from old landfill leachate by sequencing batch biofilm reactor, American J. App. Sci. 2007, 4, 4, 211-214.
  • [80] Antileo C., Werner A., Ciudad G., Muñoz C., Bornhardt C., Jeison D., Urrutia H., Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor, Biochem. Eng. Journal 2006, 32, 69-78.
  • [81] Lindemann J., Wiesmann U., Single-disc investigations on nitrogen removal of higher loads in sequencing a batch and continuously operated RDR systems, Wat. Sci. Tech. 2000, 41, 4-5, 77-84.
  • [82] Rodgers M., Zhan X.-M., Prendergast J., Wastewater treatment using a vertically moving biofilm system followed by sand filter, Process Biochem. 2005, 40, 3132-3136.
  • [83] Jung J. Y., Chung Y. C., Shin H. S., Son D. H., Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process, Wat. Res. 2004, 38, 347-354.
  • [84] Anielak A. M., Modyfikowane zeolity w inżynierii środowiska, Ekotechnika, 2005, 4, 12-15.
  • [85] Anielak A. M., Piaskowski K., Oczyszczanie ścieków zeolitami w SBR przy różnych układach faz procesowych, Inż. i Ochr. Śród. 2005, 8, 1, 73-86.
  • [86] Anielak A. M., Niekonwencjonalne metody usuwania substancji biogennych w bioreaktorach sekwencyjnych, GWiTS 2006, 2, 23-27.
  • [87] He S. B., Xue G., Kong H. N., Li X., Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite powder, J. Hazard. Mater. 2007, 142, 1-2, 493-499.
  • [88] Anielak A. M., Smarzyńska M., Oczyszczanie ścieków zeolitami naturalnymi w systemie SBR na oczyszczalni ścieków w Krokowej, GWiTS 2007, 5, 30-35.
  • [89] Kulikowska D., Racka J., Organics removal and nitrification in municipal landfill leachate treated in SBRs with clinoptilolite carrier, Polish J. Nat. Sci. 2007, 22, 1, 61-72.
  • [90] Sirianuntapiboon S., Manoonpong K., Application of Granular Activated Carbon-Sequencing Batch Reactor (GAC-SBR) System for Treating Wastewater from Slaughterhouse, Thammasat Int. J. Sci. Tech. 2001, 6, 1, 16-25.
  • [91] Sirianuntapiboon S., Application of Granular Activated Carbon-Sequencing Batch Reactor (GAC-SBR) System for Treating Pulp and Paper Industry Wastewater, Thammasat Int. J. Sci. Tech. 2002, 7, 1,20-29.
  • [92] Sirianuntapiboon S., Sadahiro O., Salee P., Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes, J. Environ. Manag. 2007, 85, 162-170.
  • [93] Lee K. M., Lim P. E., Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor, Wat. Sci. Tech. 2003,47, 10,41-47.
  • [94] Chan C. H., Lim P. E., Evaluation of sequencing batch reactor performance with aerated and unaerated fill periods in treating phenol-containing wastewater. Bioresour. Technol. 2007, 98, 7, 1333-1338.
  • [95] Uygur A., Kargi F., Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor, J. Environ. Manag. 2004, 71, 1, 9-14.
  • [96] Ying W., Bonk R. R., Sojka S. A., Treatment of a landfill leachate in powdered activated carbon enhanced sequencing batch bioreactors, Eiwiron. Progress 2006, 6, 1, 1-8.
  • [97] Zilverentant A. G., Pilot-testing, design and full-scale experience of a sequencing batch reactor system for the treatment of the potentially toxic waste water from a road and rail car cleaning site, Wat. Sci. Tech. 1997, 35, 1, 259-267.
  • [98] Lim P. E., Ong S. A., Seng C. E., Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater, Wat. Res. 2002, 36, 3, 667-675.
  • [99] Ong S. A., Lim PE., Seng C. E., Effects of adsorbents and copper (II) on activated sludge micro-organisms and sequencing batch reactor treatment process, J. Hazard. Meter. 2003, 103, 3, 263-277.
  • [100] Ong S. A., Toorisaka E., Hirata M., Hano T., Effects of nickel (II) addition on the activity of activated sludge microorganisms and activated sludge process, J. Hazard. Meter. 2004, 113, 1-3, 111-121.
  • [101] Sirianuntapiboon S., Ungkaprasatcha O., Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems. Bioresour. Technol. 2007, 98, 14, 2749-2757.
  • [102] Ahn K. H., Song K. G., Cho E., Cho J., Yun H., Lee S., Kim J., Enhanced biological phosphorus and nitro gen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process, Desalination 2003, 157, 345-352.
  • [103] Bae T.-H., Han S.-S., Tak T.-M., Membrane sequencing batch reactor system for the treatment of dairy industry wastewater, Process Biochem. 2003, 39, 221-231.
  • [104] Kang I. J., Lee C. H., Kim K. J., Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system, Wat. Res. 2003, 37, 1192-1197.
  • [105] Zhang H.-M., Xiao J.-N., Cheng Y.-J., Liu L.-F., Zhang X.-W., Yang F.-L., Comparison between a sequencing batch membrane bioreactor and a conventional membrane bioreactor, Process Biochem. 2006, 41, 87-95.
  • [106] Shengquan Y., Siyuan G., Hiu W., High effective to remove nitrogen process in abattoir wastewater treatment, Desalination 2008, 222,146-150.
  • [107] Laitinen N., Luonsi A., Vilen J., Landfill leachate treatment with sequencing batch reactor and membrane bioreactor, Desalination 2006, 191, 86-91.
  • [108] Tsilogeorgis J., Zouboulis A., Samaras P., Zamboulis D., Application of a membrane sequencing batch reactor for landfill leachate treatment, Desalination 2008, 221, 483-493.
  • [109] Sroka E., Kamiński W., Bohdziewicz J., Biological treatment of meat industry wastewater, Desalination 2004, 162, 85-91.
  • [110] Bohdziewicz J., Sroka E., Integrated system of activated sludge-reverse osmosis in the treatment of the wastewater from the meat industry, Process Biochem. 2005, 40, 1517-1523.
  • [111] Bohdziewicz J., Sroka E., Application of membrane bioreactors to the treatment of the meat industry wastewater. Environmental Engineering - Pawłowski, Dudzińska & Pawłowski (eds). Taylor & Francis Group, London 2007, 85-91.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0018-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.