PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physiology and metabolism of crabtree-negative yeast Debaryomyces occidentalis

Autorzy
Identyfikatory
Warianty tytułu
PL
Fizjologia i metabolizm crabtree-ujemnych drożdży Debaryomyces occidentalis
Języki publikacji
EN
Abstrakty
EN
This paper is focused on the physiology and metabolism of non-conventional yeasts, especially these belonging to Debaryomyces (syn. Schwanniomyces) occidentialis. In these Crabtree-negative yeast strains, oxygen limitation induces alcoholic fermentation as well as activity of the key fermentative enzymes, pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH).
PL
W oparciu o dane literatury przedstawiono fizjologię i metabolizm niekonwencjonalnych drożdży należących do Debaryomyces occidentalis. U tych drożdży tlen indukuje proces fermentacji i aktywność kluczowych enzymów: dekarboksylazy pirogronianowej (PDC) i dehydrogenazy alkoholowej (ADH).
Rocznik
Tom
Strony
35--44
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
  • Instytut Technologii Fermentacji i Mikrobiologii Politechniki Łódzkiej
Bibliografia
  • [1] Barnett J.A, Payne R., Yarrow D.: Yeasts: Characteristics and identification. 3rd edition. Cambridge University Press. Cambridge, UK, (2000).
  • [2] Barnett J.A.: The utilization of disaccharides and some other sugars by yeasts. Adv. Carbohydr. Chem. Biochem. 39, 347-404, (1981).
  • [3] Barnett J.A.: The taxonomic of genus Saccharomyces Meyen ex Rees a short review for no-taxonomists. Yeast 8, 1-23, (1992).
  • [4] Boekhout T., Robert V.: Yeasts in food - beneficial and detrimental aspects. Behr's Verlag. Hamburg, Germany, 2003.
  • [5] Chen K.C., Csikasz-Nagy A., Gyorffy B., Val J., Novak B., Tyson J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369-391, (2000).
  • [6] D'Amore T., Stewart G.G.: Ethanol tolerance of yeast. Enzyme Microbial Technol. 9, 322-330, (1987).
  • [7] de Deken R.H.: The Crabtree effect: A regulatory system in yeast. J. Gen. Microbiol. 44, 149-156, (1966).
  • [8] de Winde J.H.: Functional Genetics of Industrial Yeasts; Topics in Current Genetics, Volume 2, Germany: Springer Verlag, (2003).
  • [9] van Dijken J.P., Scheffers W.A.: Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32, 199-224, (1986).
  • [10] van Dijken J.P., Weusthuis R., Pronk J.T.: Kinetics of growth and sugar consumption in yeast. Antonie van Leeuwenhoek 63, 343-352, (1993).
  • [11] Dohmen R.J., Strasser A.W.M., Zitomer R.S., Hollenberg C.P.: Regulated overproduction of α-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis. Curr. Genet. 15, 319-325, (1989).
  • [12] Dowhanick T.M., Russell I., Scherer S.W., Stewart G.G., Seligy V.L.: Expression and regulation of glucoamylase from the yeast Schwanniomyces castellii. J. Bacteriol. 172, 2360-2366, (1990).
  • [13] Fiechter A., Fuhrmann G., Kappeli O.: Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol. 22, 123-183, (1981).
  • [14] Fleet G.: Spoilage Yeasts. Crit. Rev. Biotechnol. 12, 1-44, (1992).
  • [15] Flores C.L., Rodriguez C., Petit T., Gancedo C.: Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev. 24, 507-529, (2000).
  • [16] Fredlund E.: Central carbon metabolism in the biocontrol yeast Pichia anomala - influence of oxygen limitation. Doctor's dissertation. Acta Universitatis Agriculturae Sueciae, (2004).
  • [17] Frelot D.; Moulin G.; Galzy P.: Strain selection for the purpose of alcohol production from starch substrates. Biotechnol. Lett. 4, 705-708, (1982).
  • [18] Fukuhara H.: The Kluyver effect revisited. FEMS Yeast Res. 3, 327-331, (2003).
  • [19] Gancedo C., Serrano R.: Energy yielding metabolism. In: The Yeasts. A.H. Rose and J.S. Harrison. Academic Press, London (1989).
  • [20] Geros H., Cassio F., Leao, C.: Transport of glucose in the wine spoilage yeast Dekkera anomala. Food Technol. Biotechnol. 37, 247-255, (1999).
  • [21] Gonzalez-Siso M.L, Ramil E., Cerdan M.E., Freire-Picos M.A.: Respirofermentative metabolism in Kluyveromyces lactis: Ethanol production and the Crabtree effect. Enzyme Microbial Technol. 18, 585-591, (1996).
  • [22] Kappeli O.: Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv. Microbial Physiol. 28, 181-203, (1986).
  • [23] Kirimura K., Yusa S., Rugsaseel S., Nakagawa H., Osumi M., Usami S.: Amyloselike polysaccharide accumulation and hyphal cell-surface structure in relation to citric acid production by Aspergillus niger in shake culture. Appl. Microbiol. Biotechnol. 52, 421-428, (1999).
  • [24] Kręgiel D.: Efekt Kluyvera u drożdży Schwanniomyces sp. Post. Mikrobiol. 44, 1, 39-45, (2005).
  • [25] Lagunas R.: Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2, 221-228, (1986).
  • [26] Maier A., Volker B., Boles E., Fuhrmann G.F.: Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxtl, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2, 539-550, (2002).
  • [27] Mansure J.J., Souza R.C., Panek A.D.: Trehalose metabolism in Saccharomyces cerevisiae during alcoholic fermentation. Biotechnol. Lett. 19, 1201-1203, (1997).
  • [28] Minagawa N., Yoshimoto A.: The induction of cyanide-resistant respiration in Hansenula anomala. J. Biochem. 101, 1141-1146, (1987).
  • [29] Nobre A., Lucas C., Leao C.: Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl. Environ. Microbiol. 65, 3594-3598, (1999).
  • [30] Oberman H., Stobiriska H., Kręgiel D.: Otrzymywanie ulepszonych szczepów drożdży Schwanniomyces occidentalis na drodze mutacji i regeneracji protoplastów. Acta Aliment. Polon. 17, 145-158, (1991).
  • [31] Oberman H., Stobinska H., Kręgiel D., Kozanecka E.: Aktywność amylolityczna mutantów Schwanniomyces occidentalis. Acta Alimen. Polon. 15, 85-95, (1989).
  • [32] Pronk J.T., Steensma, H.Y., van Dijken, J.P.: Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607-1633, (1996).
  • [33] Siedow J.N., Berthold D.A.: The alternative oxidases: A cyanide-resistant respiratory pathway in higher plants. Physiol. Plant. 66, 569-573 (1986).
  • [34] Sims A.P., Barnett J.A.: The requirement of oxygen for the utilization of maltose, cellobiose and D-galactose by certain anaerobically fermenting yeast's (Kluyver effect). J. Gen. Microbiol. 106, 277-288, (1978).
  • [35] Stobińska H., Drewicz E., Kręgiel D., Oberman H.: Próby transformacji cechy killerowej drożdży Saccharomyces cerevisiae do amylolitycznego szczepu Schwanniomyces occidentalis. Biotechnologia, 36, 158-166, (1997).
  • [36] Strasser A.W.M., Selk R., Dohmen R.J., Niermann T., Bielefeld M., Seeboth P., Tu G., Hollenberg C.P.: Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. Eur. J. Biochem. 184, 699-706, (1989).
  • [37] van Uden N.: Ethanol toxicity and ethanol tolerance in yeasts. Annu. Rep. Ferment. Proces. 8, 11-58, (1985).
  • [38] van Urk H., Postma E., Scheffers W.A., van Dijken J.P.: Glucose transport in Crabtree-positive and Crabtree-negative yeasts. J. Gen. Microbiol. 135, 2399-2406, (1989).
  • [39] Van Urk H., Voll W.S.L., Dcheffers W.A., van Dijken J.: Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl. Environ. Microbiol. 56, 281-287, (1990).
  • [40] Veiga A., Arrabaca J.D., Loureiro-Dias M.C.: Cyanide-resistant respiration is frequent, but confined to yeasts incapable of aerobic fermentation. FEMS Microbiol. Lett. 190, 93-97, (2000).
  • [41] Veiga A., Arrabaca J.D., Loureiro-Dias M.C.: Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Res. 3, 239-245, (2003).
  • [42] Verduyn C., Zomerdijk P., van Dijken J.P., Scheffers W.A.: Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl. Microbiol. Biotechnol. 19, 181-185, (1984).
  • [43] Viola A., Bortesi T., Pizzigoni R., Puglisi P., Goffrini P., Frerrero I.: The respiratory activities of four Hansenula species. Antonie van Leeuwenhoek 52, 295-308, (1986).
  • [44] Violle P., Boze H., Moulin G., Galzy P.: Transport and hydrolysis of maltose by Schwanniomyces castellii. J. Basic Microbiol. 32, 57-63, (1992).
  • [45] Walker G.M.: Yeast Physiology and Biotechnology. John Wiley and Sons, Chichester, UK, (1998).
  • [46] Wang T-T., Lee Ch-F., Lee B.H.: The molecular biology of Schwanniomyces occidentalis Klocker. Crit. Rev. Biotechnol. 19, 113-143, (1999).
  • [47] Weusthuis R.A., Visser W., Pronk J.T., Scheffers W.A., van Dijken, J.P.: Effects of oxygen limitation on sugar metabolism in yeasts: a continuous culture study of the Kluyver effect. Microbiology 140, 703-715, (1994).
  • [48] Wilson J.J., Khachatourians G.G., Ingledew M.M.: Protoplast fusion in the yeast Schwanniomyces alluvius. Mol. Gen. Gen. 186, 95-100, (1982).
  • [49] Yokioka H., Inagaki S., Tanaka R., Katoh K., Miki N., Mizutani A., Masuko M.: Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by respiratory-inhibiting fungicide and hydrogen peroxide. Biochim. Biophys. Acta 1442, 161-169, (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0012-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.