PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Potentiometric and spectroscopic studies on di-, tri- and tetraglycine with copper (II) ions systems

Autorzy
Identyfikatory
Warianty tytułu
PL
Potencjometryczne i spektroskopowe badania układów di-, tri- i tetraglicyny z jonami miedzi (II)
Języki publikacji
PL
Abstrakty
PL
W pracy tej dokonano przeglądu literaturowego na temat kompleksów jonów miedzi (II) z di-, tri- i tetraglicyną, zwracając uwagę na rodzaje form ich kompleksowania. Przeprowadzono również badania potencjometryczne i spektroskopowe powyższych kompleksów oraz wykazano zależność tworzenia się poszczególnych ich form od pH.
EN
This article is a review of literature on copper (II) ions with di-, tri- and tetraglicyne complexes, with special reference to kinds of their complexing forms. Potentiometric and spectroscopic studies of the complexes mentioned above have also been performed. Additionally, a dependence of formation of individual complexes on PH has been demonstrated.
Rocznik
Tom
Strony
15--34
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
  • Instytut Podstaw Chemii Żywności, Politechnika Łódzka
Bibliografia
  • [1] Alexandrova R., Rasshkova G., Alexandrov I., Tsenova W., Tudose R., Costisor O.: Briefly about copper, Experim. Pathol. and Parasitol., 1311, 6851, (2003).
  • [2] Malmström B.G., Leckner J.: The chemical biology of copper. Curr. Opin. Chem. Biol. 2, 286-292, (1998).
  • [3] Hanaki A.: Ternary Complexes from Cu(II)-Oligopeptide and N-Acetyl-L-histidine, as Studied by Circular Dichroism Spectroscopy, J. Inorg. Biochem., 99, 147, (1999).
  • [4] Shleeva S., Tkaca J., Christensona A., Ruzgasa T., Yaropolovb A.I., Whittakerd J. W., Gorton L.: Direct electron transfer between copper-containing proteins and electrodes, Biosensors and Bioelectronics, 20, 2517, (2005).
  • [5] Schwendinger M.G., Tauler R., Saetia S., Liedl K.R., Kroemer R.T., Rode B.M.: Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions, Inorg. Chim. Acta, 228, 207-214, (1995).
  • [6] Kroneck P.M., Vortisch V., Hemmerich P.: Model Studies on the Coordination of Copper in Biological Systems, Eur. J. Biochem IUY., 12, 603, (1980).
  • [7] Sóvágó I.: In Biocoordination Chemistry: Coordination Equilibria in Biologically Active Systems, Burger K. Ed.; Ellis Horwood: New York, 135-184, (1990).
  • [8] Fan J., Shen X., Wang J.: Determination of Stability Constants of Copper(II)-Glycine Complex in Mixed Solvents by Copper(II)-Selective Electrode, Croatica Chemica Acta., 76, 2846, (2003).
  • [9] Remko M., Rode M.B.: Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine, J. Phys. Chem. A, 24, 239, (2005).
  • [10] Sigel H., Martin R.B.: Coordinating Properties of the Amide Bond. Stability and Structure of Metal Ion Complexes of Peptides and Related Ligands. Chem. Rev. 82, 385, (1982).
  • [11] Sóvágó I., Osz K.: Metal ion selectivity of oligopeptides, J. Chem. Dalton Trans., 6, 3841, (2006).
  • [12] Gooding J.J., Hibbert D.B., Yang W.: Electrochemical Metal Ion Sensors. Exploiting Amino Acids and Peptides as Recognition Elements, Sensors, 1, 75, (2001)
  • [13] Liler M.: Studies of nuclear magnetic resonance chemical shifts caused by protonation. Part I. Substituted acetamides and some N-methyl and NN-dimethyl-derivatives, J. Chem. Soc. B., 1, 385, (1969).
  • [14] Templeton D.M., Sarkar B.: Fletcher-Powell minimization of analytical potentiometric data by microcomputer: application to the Cu(II) complexes of biological polyamines, Department of Biochemistry, University of Toronto, 8, 1-3, (1985).
  • [15] Khebichat N., Ghalem S.: Theoretical study of dipeptide complexes of copper(II), J. Molecular Struct. Theochem., 777, 107-111, (2006).
  • [16] Nagypol I., Gergely A.: Studies on Transition-Metal-Peptide Complexes. Part 2. Equilibrium Study of the Mixed Complexes of Copper (II) with Aliphatic Dipeptides and Amino-acids, J. Chem. Soc., 4010, 1977, (1977).
  • [17] Sóvágó I., Sanna D., Dessi A., Várnagy K., Micera G.: EPR and Potentiometric Reinvestigation of Copper(II) Complexation with Simple Oligopeptides and Related Compounds, J. Inorg. Chem., 63, 99-117, (1996).
  • [18] Meyers R. A.: Encyclopedia of analytical chemistry, Ed. Wiley, 58, (2006).
  • [19] Adman E.T.: Copper protein structures, Adv. Protein Chem., 42, 145, (1991).
  • [20] Santos M.L.P., Faljoni-Alario A., Mangrich A.S., Ferreira A.M.: Antioxidant and pro-oxidant properties of some di-Schiff base copper(II) complexes, J. Inorg. Biochem., 71, 71, (1998).
  • [21] Várnagy K., Bóka B., Sóvágó I., Sanna D., Marras P., Micera G.: Potentiometric and spectroscopic studies on the copper (II) and nickel (II) complexes of tripeptides of methionine, Inorg. Chim. Acta, 275, 440-446, (1998).
  • [22] Gergely A., Nagypál I.: Studies on transition-metal-peptide complexes. Part I. Equilibrum and thermochemical study of the copper (II) complexes of glycylglycine, glycyl-DL-α-alanine, DL-α-alanylglycine and DL-α-alanyl-DL-α-ananine, J. Chem. Soc., Dalton Trans., 11, 1104-1108, (1977).
  • [23] Łodyga-Chruścińska E., Sanna D., Micera G., Chruściński L., Olejnik J., Nachman R.J., Zabrocki J.: Chelating ability of proctolin tetrazole analogue, Acta Biochim. Pol., 53, 65-72, (2006).
  • [24] Łodyga-Chruścinska E., Sanna D., Micera G., Olejnik J., Zabrocki J.: A new class of peptide chelating agents towards copper(II) ions, Polyhedron, 20, 1915-1923, (2001).
  • [25] Prenesti E., Daniele P.G., Prencipe M., Ostacoli G.: Spectrum-structure correlation for visible absorption spectra of copper(II) complexes in aqueous solution, Polyhedron, 18, 3233-3241, (1999).
  • [26] Prenesti E., Daniele P.G., Toso S.: Visible spectrophotometric determination of metal ions: the influence of structure on molar absorptivity value of copper(II) complexes in aqueous solution, Anal. Chim. Acta, 459, 323-336, (2002).
  • [27] Gans P., Sabatini A., Vacca A.: SUPERQUAD: an improved general program for computation of formation constants from potentiometric data, J. Chem. Soc., Dalton Trans., 1195-1200, (1985).
  • [28] Shtyrlin V.G., Gogolashvili E.L., Zakharov A.V.: Composition, stability, and lability of copper(II) dipeptide complexes, J. Chem. Soc., Dalton Trans., 1293-1297, (1989).
  • [29] Hanaki A., Kawashima T., Konishi T., Takano T., Mabuchi D., Odani A., Yamauchi O.: Copper(II)-tripeptide complexes in aqueous solution. Effects of the C-terminal chelate ring size on the coordination structure of doubly deprotonated complex species, J. Inorg. Biochem., 77, 147-155, (1999).
  • [30] Bal W., Kozlowski H., Lisowski M., Pettit L.D.: A dramatic change in the interaction of Cu(II) with bio-peptides promoted by SDS-a model for complex formation on a membrane surface, J. Inorg. Biochem., 55, 41-45, (1994).
  • [31] Lukas M., Ky'vala M., Hermann P., Lukes I., Sanna D., Micera G.: Complexing properties of [(glycylamino)methyl] phosphinic acids towards Co2+, Ni2+, Cu2+ and Zn2+ ions in aqueous solutions, J. Chem. Soc., Dalton Trans., 6, 2850-2857, (2001).
  • [32] Szabó-Plánka T., Rockenbauer A., Korecz L.: ESR study of the copper(II)-glycylglycine equilibrum system in fluid aqueous solution computer analysis of overlapping multispecies spectra, Magn. Reson. Chem., 37, 484-492, (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD7-0012-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.