PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aspekty tworzenia koncepcji obrabiarki inteligentnej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Aspects of creation if intelligent machine tool concept
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono koncepcję budowy obrabiarki "inteligentnej" wyposażonej w odpowiednie systemy diagnostyczne do kontroli jej pracy. Zaprezentowano trendy światowe w zakresie rozwoju tej koncepcji oraz projekty badawcze realizowane w Instytucie Technologii Mechanicznej (ITM) i Centrum Mechatroniki (CM), funkcjonującymi na Wydziale Inżynierii Mechanicznej i Mechatroniki Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie. Przedstawione projekty badawcze są pracami cząstkowymi rozwijającymi wybrane aspekty diagnostyki obrabiarki "inteligentnej", takie jak kompensacja odkształceń cieplnych, błędów wolumetrycznych, widzenie maszynowe. Ponadto, wybrane projekty badawcze zajmują się rozwojem nowoczesnych technik modelowania i sterowania systemami mechatronicznymi, do których zaliczana jest obrabiarka "inteligentna".
EN
The article presents the concept of building "intelligent" machine tools, equipped with the appropriate diagnostic systems to monitor their work. Global trends in the development of this concept and research projects at the Institute of Mechanical Technology and the Centre for Mechatronics functioning at the Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin is presented. Presented research projects are the work within selected aspects of developing "intelligent" machine tools diagnostics such as compensation of thermal deformations, volumetric error, machine vision. In addition, selected research projects address the development of modern techniques of modeling and control mechatronics systems, where "intelligent" machine tool is classified.
Czasopismo
Rocznik
Strony
7--39
Opis fizyczny
Bibliogr. 116 poz.
Twórcy
autor
autor
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej i Mechatroniki, al. Piastów 19, 70-311 Szczecin
Bibliografia
  • [1] ABELE E., ALTINTAS Y., BRECHER C., 2010, Machine tool spindle units, CIRP Annals - Manufacturing Technology, 59/781-802.
  • [2] AL-REGIB E., NI J., LEE S.-H., 2003, Programming spindle speed vibration for machine tool chatter suppression, International Journal of Machine Tools & Manufacture, 43/1229-1240.
  • [3] ALTER D.M., TSAO T., 1996, Control of linear motors for machine tool feed drivers: design and implementation of H1 optimal feedback control, ASME Journal of Dynamic Systems Measurement and Control, 118/649-655.
  • [4] ALTER D.M., TSAO T., 1998, Control of linear motors for machine tool feed drivers: experimental investigation of optimal feed forward tracking control, ASME Journal of Dynamic Systems Measurements and Control, 120/137-141.
  • [5] ALTINTAS Y., ENGIN S., 2001, Generalized modeling of mechanics and dynamics of milling cutters, Annals of the CIRP, 50/1/25-30.
  • [6] ALTINTAS Y., EROL N.A., 1998, Open architecture modular tool kit for motion and machining process control, Annals of the CIRP, 47/1, 295-300.
  • [7] ATTIA M.H., FRASER S., 1999, A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures, International Journal of Machine Tools & Manufacture, 39/1001-1016.
  • [8] ATTIA M.H., FRASER S., OSMAN M.O.M., 1999, On-line estimation of time-variant thermal load applied to machine tool structures using a s-domain inverse solution, International Journal of Machine Tools & Manufacture, 39, 985-1000.
  • [9] AYERS T., NOLAN B., 2006, Voice activated command and control with speech recognition over WiFi, Science of Computer Programming, 59/1-2/109-126.
  • [10] BALIC J., 2006, Intelligent CAD/CAM systems for CNC programming - An overview, Advances in Production Engineering and Management, 1/13-22.
  • [11] BALIC J., KOROSEC M., 2002, Intelligent tool path generation for milling of free surfaces using neural networks, International Journal of Machine Tools & Manufacture, 42/1171-1179.
  • [12] BANDYOPADHYAY B.P., BHATACHARYA R.K, 1991, Chatter reduction in machine tools, 42-nd Earthmoving Industry Conference, Illinois, USA, 1-8.
  • [13] BENGIO Y., 1996, Neural networks for speech and sequence recognition, International Thomson Publishing, London.
  • [14] BRECHER C., ESSER M., WITT S., 2009, Interaction of manufacturing process and machine tool, CIRP Annals Manufacturing Technology, 58/588-607.
  • [15] CAO Y., ALTINTAS Y., 2007, Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations, International Journal of Machine Tools & Manufacture, 47/1342-1350.
  • [16] CERISARA C., DEMANGE S., HATON J.P., 2007, On noise masking for automatic missing data speech recognition, Computer Speech & Language, 21/3/443-457.
  • [17] CHEN J.-S., HSU W.-Y., 2003, Characterizations and models for the thermal growth of a motorized high speed spindle, International Journal of Machine Tools & Manufacture, 43/1163-1170.
  • [18] CHENG T., ZHANG J., HU CH., WU B., YANG S., 2001, Intelligent machine tools in a distributed network manufacturing mode environment, The International Journal of Advanced Manufacturing Technology, 17/221-232.
  • [19] CHO S., ASFOUR S., ONAR A., KAUNDINYA N., 2005, Tool breakage detection using support vector machine learning in a milling process, International Journal of Machine Tools & Manufacture, 45/241-249.
  • [20] CHODŹKO M., 2006, Zwiększenie wibrostabilności systemu obrabiarka - proces skrawania, przez zastosowanie eliminatora drgań, Politechnika Szczecińska, rozprawa doktorska, Szczecin.
  • [21] CHO S., ASFOUR S., ONAR A., KAUNDINYA N., 2005, Tool breakage detection using support vector machine learning in a milling process, International Journal of Machine Tools & Manufacture, 45/241-249.
  • [22] CHODŹKO M., PAJOR M., 2011, Badania modalne prototypu frezarki FV2 oraz prognozowanie jej wibrostabilności, Archiwum Technologii Maszyn i Automatyzacji, 31/2/143-151.
  • [23] CHUNG CH., PENG Q., 2004, The selection of tools and machines on web-based manufacturing environments, International Journal of Machine Tools & Manufacture, 44/317-326.
  • [24] DENKENA B., KALLAGE F., RUSKOWSKI M., POPP K., 2004, Machine tool with active magnetic guides, CIRP Annals - Manufacturing Technology, 53/1/333-336.
  • [25] DOMEK S., PAJOR M., PIETRUSEWICZ K., URBAŃSKI Ł., 2009, Otwarty modułowy system sterowania obrabiarki CNC, Modelowanie Inżynierskie, 6/37/77-82.
  • [26] EHMANN K.F., KAPOOR S.G., DEVOR R.E, LAZOGLU I., 1997, Machining process modeling: A Review, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 119/655-663.
  • [27] ERKORKMAZ K., ALTINTAS Y., YEUNG C.H., 2006, Virtual computer numerical control system, Annals of the CIRP, 55/1.
  • [28] EROL N.A., ALTINTAS Y., ITO M., 2000, Open architecture modular tool kit for motion and machining process control, ASME/IEEE Transactions on Mechatronics, 5/3/281-291.
  • [29] G.PRITSCHOW, KRAMER C., 2005, Open system architecture for drives, CIRP Annals - Manufacturing Technology, 54/1/375-378.
  • [30] HSUE A.W.J., YAN M.-T., KE S.-H., 2007, Comparison on linear synchronous motors and conventional rotary motors driven Wire-EDM processes, Journal of Materials Processing Technology, 192-116/478-485.
  • [31] INSPERGER T., MANN B.P., STEPAN G., BAYLY P.V., 2003, Stability of up-milling and down-milling, part 1: Alternative analytical methods, International Journal of Machine Tools & Manufacture, 43/25-34.
  • [32] INSPERGER T., STEPAN G., 2000, Stability of high-speed milling, Proceedings of Symposium on Nonlinear Dynamics and Stochastic Mechanics, AMD - Orlando, 241/1-5.
  • [33] JASTRZĘBSKI D., MAJDA P., PAWEŁKO P., 2010, Obliczenia układu nośnego frezarek o różnych strukturach geometryczno-ruchowych, Archiwum Technologii Maszyn i Automatyzacji, 30/2/145-154.
  • [34] JASTRZĘBSKI D., MAJDA P., PAWEŁKO P., SZWENGIER G., 2010, Wpływ technik modelowania mechanizmów śrubowo-tocznych na czas i dokładność ich obliczeń, Archiwum Technologii Maszyn i Automatyzacji, 30/2/155-161.
  • [35] JAYARAM S., KAPOOR, DEVOR R.E., 2000, Analytical stability analysis of variable spindle speed machining, Transactions of ASME. Journal of Manufacturing Science and Engineering, 122/391-397.
  • [36] JĘDRZEJEWSKI J., 2011, Doskonalenie obrabiarek - trendy, redukcja błędów i dokonania producentów - cz. I, Technologie i urządzenia, maj-czerwiec, 72-75.
  • [37] JĘDRZEJEWSKI J., 2011, Doskonalenie obrabiarek- trendy, redukcja błędów i dokonania producentów - cz. II, Technologie i urządzenia, lipiec-sierpień, 18.
  • [38] JĘDRZEJEWSKI J., KOWAL Z., KWAŚNY W., MODRZYCKI W., 2005, High-speed precise machine tools spindle units improving, Journal of Materials Processing Technology, 162-163/615-621.
  • [39] JĘDRZEJEWSKI J., KOWAL Z., KWAŚNY W., MODRZYCKI W., 2004, Hybrid model of high speed machining centre headstock, CIRP Annals - Manufacturing Technology, 53/1/285-288.
  • [40] JĘDRZEJEWSKI J., MODRZYCKI W., KOWAL Z., KWAŚNY W., WINIARSKI Z., 2007, Precise modelling of HSC machine tool thermal behaviour, Journal of Achievements in Materials and Manufacturing Engineering, 24/1/245-252.
  • [41] KADIR A.A., XU X., HAMMERLE E., 2011, Virtual machine tools and virtual machining - a technological review, Robotics and Computer-Integrated Manufacturing, 27, 494-508.
  • [42] KALIŃSKI K., KUCHARSKI T., SAWIAK S., 2001, Nadzorowanie drgań narzędzia za pomocą ciągłej zmiany prędkości obrotowej wrzeciona, Third International Conference on Metal Cutting and High Speed Machining, Metz, 241-250.
  • [43] KAMAR-NAGY T., MOON F.C., 2004, Mode-coupled regenerative machine tool vibrations, W: Nonlinear Dynamics of Production Systems, Wiley-VCH Verlag, Weinheim, 129-151.
  • [44] KIM D.-H., SONG J.-Y., LEE J.-H., CHA S.-K., 2009, Development and evaluation of intelligent machine tools based on knowledge evolution in M2M environment, Journal of Mechanical Science and Technology, 23/2807-2813.
  • [45] KOLÁŘ P., 2007, Vysokootáčková vřetena NC obrábĕcích stroju, Rozprawa doktorska, Praga.
  • [46] KOLAR P., SULITKA M., JANOTA M., 2011, Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame, Int. J. Adv. Manuf. Technol., 54/11-20.
  • [47] KOSMOL J., 1998, Serwonapędy obrabiarek sterowanych numerycznie, WNT, Warszawa.
  • [48] KUO L.Y., YEN J.-Y., 2001, Servo parameter tuning for a 5-axis machine center based upon GA rules, International Journal of Machine Tools & Manufacture, 41/1535-1550.
  • [49] LAGİ T.L., OLSON S., HÁKANSON L.,CLAESSON I., 2002, Performance of a chatter control system for turning and boring applications, 4th GRACM Congress on Computational Mechanics, Patras, 1-8.
  • [50] LEE S.W., KIM D.H., SONG J.Y., LEE H.K., 2005, Agent-based decision support system for realizing intelligent machine tools, 2005 WSEAS Int. Conf. on Dynamical Systems and Control, Venice, Italy, 85-90.
  • [51] LEI M., YANG X., TSENG M.M., YANG S., 1998, Design an intelligent machine center strategy and practice, Mechatronics, 8/271-285.
  • [52] LIM H.S., SON S.M., WONG Y.S., RAHMAN M., 2007, Development and evaluation of an on-machine optical measurement device, International Journal of Machine Tools & Manufacture, 47/1556-1562.
  • [53] LIU Q., ALTINTAS Y., 1999, On-line monitoring of flank wear in turning with multilayered feed-forward neural network, International Journal of Machine Tools & Manufacture, 39/1945-1959.
  • [54] LIU Y., GUO X., LI W., YAMAZAKI K., KASHIHARA K., FUJISHIMA M., 2007, An intelligent NC program processor for CNC system of machine tool, Journal Robotics and Computer-Integrated Manufacturing, 23/2/1-19.
  • [55] LUHMANN T., ROBSON S., KYLE S., HARLEY I., 2008, Close range hotogrammetry: principles, techniques and applications, John Wiley & Sons, New York.
  • [56] MAJDA P., 2009, Symulacyjne badania dokładności geometrycznej trójosiowej obrabiarki skrawającej, MwTW, materiały konferencyjne, Poznań-Żerków, 263-268.
  • [57] MAJEWSKI M., 2010, Podstawy budowy inteligentnych systemów interakcji urządzeń technologicznych i ich operatorów, Politechnika Koszalińska, Koszalin.
  • [58] MANN B.P., INSPERGER T., BAYLY P.V., STEPAN G., 2003, Stability of up-milling and down-milling, part 2: experimental verification, International Journal of Machine Tools & Manufacture, 43/35-40.
  • [59] MARCHELEK K., 1991, Dynamika obrabiarek, WNT, Warszawa.
  • [60] MARIETTA M., 1994, Next generation controller specification for an open system architecture standard (SOSAS) NGC project report, USA.
  • [61] MEKID S., PRUSCHEK P., HERNANDEZ J., 2009, Beyond intelligent manufacturing: A new generation of flexible intelligent NC machines, Mechanism and Machine Theory, 44/466-476.
  • [62] MÖHRING H.-C., LITWINSKI K.M., GÜMMER O., 2010, Process monitoring with sensory machine tool components, CIRP Annals - Manufacturing Technology, 59/383-386.
  • [63] MORALES-VELAZQUEZ L., RENE DE JESUS R.-T., OSORNIO-RIOS R.A., HERRERA-RUIZ G., CABALYEPEZ E., 2010, Open-architecture system based on a reconfigurable hardware-software multi-agent platform for CNC machines, Journal of Systems Architecture, 56/407-418.
  • [64] MORGAN G., CHENG R.Q., ALTINTAS Y., RIDGWAY K., 2007, An expert troubleshooting system for the milling process, International Journal of Machine Tools & Manufacture, 47/1417-1425.
  • [65] MORI N., YAMAZAKI K., FUJISHIMA M., LIU J., FURUKAWA N., 2001, A study on development of an open servo system for intelligent control of a CNC machine tool, CIRP Annals - Manufacturing Technology, 50/1/247-250.
  • [66] MORIWAKI T., 2008, Multi-functional machine tool, CIRP Annals - Manufacturing Technology,57/1/736-749.
  • [67] NEUGEBAUER R., DENKENA B., WEGENER K., 2007, Mechatronic systems for machine tools, Annals of the CIRP, 56/2/657-686.
  • [68] NEWMAN S.T., NASSEHI A., 2009, Machine tool capability profile for intelligent process planning, CIRP Annals - Manufacturing Technology, 58/421-424.
  • [69] NEUGEBAUER R., DENKENA B., WEGENER K., 2007, Mechatronic systems for machine tools, Annals of the CIRP, 56/2/657-686.
  • [70] OLSZEWSKI J., 2010, Badania właściwości eksploatacyjnych stołu obrotowego sterowanego numerycznie z napędami bezpośrednimi, Politechnika Poznańska, praca doktorska, Poznań.
  • [71] OMAC API WORK GROUP, 1999, OMAC API SET working document, version 0.20, USA,.
  • [72] Open system architecture for controls within automation (OSACA) systems, OSACA CONSORTIUM, ESPRIT III project Final Report, UE, 1996.
  • [73] OSE CONSORTIUM, 1998, Development of open system environment for controller (OSEC), OSEC-II project technical report, Japonia.
  • [74] PAJOR M., 2006, Wibrostabilność skrawania wieloostrzowymi narzędziami obrotowymi, Prace Naukowe Politechniki Szczecińskiej, 597.
  • [75] PAJOR M., PARUS A., HOFFMANN M., 2009, Modelowanie charakterystyki pracy siłownika piezoelektrycznego zastosowanego do konstrukcji eliminatora drgań, Modelowanie Inżynierskie, 6/37/225-233.
  • [76] PARUS A., DOMEK S., MARCHELEK K., 2006, Efficiency of vibration absorber control methods in machining, Proc. 11-th Nonlinear Vibrations, Stability, and Dynamics of Structures Conference, Blacksburg, USA, 125-127.
  • [77] PARUS A., PAJOR M., HOFFMANN M., 2009, Suppression of self-excited vibration in cutting process using piezoelectric and electromagnetic actuators, Advances in Manufacturing Science and Technology, 33/4, 35-50.
  • [78] PRICKETT P.W., JOHNS C., 1999, An overview of approaches to end milling tool monitoring, International Journal of Machine Tools & Manufacture, 39/105-122.
  • [79] PRITSCHOW G., ALTINTAS Y., JOVANE F., KOREN Y., MITSUISHI M., TAKATA S., BRUSSEL H. van, WECK M., YAMAZAKI K., 2001, Open controller architecture - past, present and future, Annals of the CIRP, 50/2/463-470.
  • [80] RAMESH R. , MANNAN M.A., POO A.N., 2000, Error compensation in machine tools - A review, Part I: Geometric, cutting-force induced and fixture dependent errors, International Journal of Machine Tools & Manufacture, 40/1235-1256.
  • [81] RAMESH R., MANNAN M.A., POO A.N., 2005, Tracking and contour error control in CNC servo systems, International Journal of Machine Tools & Manufacture, 4301-326.
  • [82] RENÉ DE JESÚS R.-T., GILBERTO H.-R., IVÁN T.-V., CARLOS J.-C.J., 2003, Driver current analysis for sensorless tool breakage monitoring of CNC milling machines, International Journal of Machine Tools & Manufacture, 43/1529-1534.
  • [83] ROWE W.B., CHEN Y., MORUZZI J. L., MILLS B., 1997, A generic intelligent control system for grinding, Computer Integrated Manufacturing System, 10/3/231-241.
  • [84] RZEVSKI G., 2003, On conceptual design of intelligent mechatronic systems, Mechatronics, 13/1029-1044.
  • [85] SASTRY S., KAPOOR S.G. DEVOR R.E., 2002, Floquet theory based approach for stability analysis of the variable speed face-milling process, Transactions of ASME. Journal of Manufacturing Science and Engineering, 124/10-17.
  • [86] SCHMANDT C., 1994, Voice communication with computers, Van Nostrand Reinbold ITP, New York.
  • [87] SCHWEITZER G., MASLEN E.H., 2009, Magnetic bearings: theory, design, and application to rotating machinery, Springer-Verlag, Berlin.
  • [88] SHIU CH., WASHBURN M.J., WANG S., RAVISHANKAR CH.V., SHIN K.G, 1998, Specifying reconfigurable control flow for open architecture controllers, Proc.1998 Japan-USA Symp. on Flexible Automation.
  • [89] SMITHEY D.W., KAPOOR S.G., DEVOR R.E., 2000, A worn tool force model for three-dimensional cutting operations, International Journal of Machine Tools & Manufacture, 40/1929-1950.
  • [90] SMOLÍK J., 2007, Nosné díly obrábĕcích strojů z nekonvenčních materiálů, Rozprawa doktorska, Praga.
  • [91] TARNG Y.S. , CHUANG H.Y., HSU W.T., 1999, Intelligent cross-coupled fuzzy feedrate controller design for CNC machine tools based on genetic algorithms, International Journal of Machine Tools & Manufacture, 39/1673-1692.
  • [92] TSENG P.C., CHOU A., 2002, The intelligent on-line monitoring of end milling, International Journal of Machine Tools & Manufacture, 42/89-97.
  • [93] TUREK P., MODRZYCKI W., JĘDRZEJEWSKI J., 2010, Analiza metod kompensacji błędów obrabiarek, Inżynieria Maszyn, 15/1-2/130-149.
  • [94] TUREK P., KWAŚNY W., JĘDRZEJEWSKI J., 2010, Analiza zaawansowanych metod identyfikacji błędów obrabiarek, Inżynieria Maszyn, 15/1-2/7-36.
  • [95] URBAŃSKI Ł., PIETRUSEWICZ K., MAJDA P., 2010, Badania doświadczalne właściwości dynamicznych napędu posuwu obrabiarki CNC, Mechanik, 3/162-168.
  • [96] WANG M., RENYUAN F., 1999, Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids, International Journal of Machine Tools & Manufacture, 39/1925-1934.
  • [97] WINIARSKI Z., KOWAL Z., KWAŚNY W., HA J.Y., 2010, Modelowanie cieplnego zachowania się wrzeciennika ze złożonym napędem, Inżynieria Maszyn, 15/1-2/116-129.
  • [98] WOONG M., CHA J.-H., PARK J.-H., KANG M., 1999, Development of an intelligent design system for embodiment design of machine tools, Annals of the CIRP, 48/7/329-332.
  • [99] WORONKO A., HUANG J., ALTINTAS Y., 2003, Piezoelectric tool actuator for precision machining on conventional CNC turning centers, Precision Engineering, 27/ 335-345.
  • [100] XIONG-BO M., ZHEN-YU H., YONG-ZHANG W., HONG-YA F., 2007, Development of a PC-based open architecture software-CNC system, Chinese Journal of Aeronautics, 20/272-281.
  • [101] XU X.W. , NEWMAN S.T., 2006, Making CNC machine tools more open, interoperable and intelligent-a review of the technologies, Computers in Industry, 57/141-152.
  • [102] YEUNG CH.-H., ALTINTAS Y., ERKORKMAZ K., 2006, Virtual CNC system. Part I. System architecture, International Journal of Machine Tools & Manufacture, 46/1107-1123.
  • [103] YILMAZ A., AL-REGIB E., NI J., 2002, Machine chatter suppression by multi-level random spindle speed variation, Transactions of ASME. Journal of Manufacturing Science and Engineering, 124/208-216.
  • [104] YONGLIN C., JIANGUO C., ZUYU W., 2003, Platform for an open architecture controller based on a general operation system with a hard real-time extension, International Journal of Production Research, 41/2839-2850.
  • [105] YONGLIN CH., 2005, An evaluation space for open architecture controllers, Int. J. Adv. Manuf. Technology, 26/351-358.
  • [106] YOON M.C., KIM Y.G., 2004, Cutting dynamic force modeling of endmilling operation, Journal of Materials Processing Technology, 155-156/1383-1389.
  • [107] YUN W.-S., CHO D.-W., 2001, Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling, International Journal of Machine Tools & Manufacture, 41/463-478.
  • [108] ZAEH M., SIEDL D., 2007, A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools, Annals of the CIRP, 56/1/383-386.
  • [109] ZAEH M.F., POERNBACHER C., 2005, A model-based method to develop PLC software for machine tools, Annals of the CIRP, 54/1/371-374.
  • [110] http://www.heidenhain.com
  • [111] http://www.automation.siemens.com/mcms/mc/en/automation-systems/cnc-sinumerik/Pages/cnc-systems.aspx
  • [112] http://www.fanucfa.com/pl-pl/Home
  • [113] http://www.dmgmoriseikiusa.com/original-technologies#dcg
  • [114] http://www.johnhartmachinetools.com.au/technology/intelligent-machine/
  • [115] http://www.moriseiki.com/english/products/app/mapps_iv_index.html
  • [116] http://www.system3r.com/3r/en/products-services/products/precision-production/vdp.aspx
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0031-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.