PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Usuwanie zanieczyszczeń z roztworów wodnych w kolumnie wypełnionej - zagadnienia modelowania dynamiki adsorpcji

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Woda do celów przemysłowych i potrzeb ludności musi odpowiadać ściśle określonym wymogom. W celu pochłaniania zanieczyszczeń z roztworów stosuje się proces adsorpcji z wykorzystaniem adsorbentów stałych o silnie rozwiniętej powierzchni. W ostatnim dziesięcioleciu zauważa się zainteresowanie tanimi i nowymi adsorbentami do usuwania jonów metali ciężkich. Do badań wytypowano adsorbenty z różnych grup: - węgiel aktywny: najczęściej omawiany w literaturze tematu oraz jako materiał referencyjny do sprawdzenia poprawności obliczeń modelowych, - chitozan liofilizowany; stosunkowo nowy sorbent, polecany do usuwania jonów metali ciężkich, - klinoptylolit: tani sorbent mineralny pozyskiwany na terenie Polski, również wykorzystywany do usuwania jonów metali z roztworów rozcieńczonych, - łuskę gryki: nowy materiał należący do tzw. tanich sorbentów (Iow cost), szeroko dostępny w kraju ze względu na specyfikę naszego rolnictwa. W każdym z przypadków przedstawiono prawdopodobny mechanizm wiązania jonów metali ciężkich z danym adsorbentem. W opracowaniu przedstawiono aktualny stan wiedzy na temat określania i opisu matematycznego izoterm sorpcji z roztworów ciekłych, zjawisk zachodzących w roztworze, na powierzchni i wewnątrz ziarna adsorbentu, aby w dalszej kolejności przejść do mechanizmów adsorpcji w kolumnie wypełnionej. Przedstawiono najszerzej stosowany, klasyczny bilans masy oraz możliwości obliczania wielkości charakteryzujących pracę kolumny (współczynniki dyfuzji, wysokość strefy wymiany masy etc.). W dalszej części pracy skupiono się na prowadzeniu eksperymentów. Po wykonaniu pomiarów równowagi adsorpcyjnej, w drugim etapie pracy przeprowadzono badania w kolumnie laboratoryjnej. W obu przypadkach stosowano roztwory wieloskładnikowe jonów metali ciężkich: Cu(II), Zn(II) i Ni(II). Dodatkowo w pracy przedstawiono możliwość zastosowania sztucznych sieci neuronowych do opisu równowagi sorpcji w układach wieloskładnikowych. W dalszej kolejności (w rozważaniach inżynierskich), po wyborze odpowiedniego adsorbentu i badaniach wstępnych w małej skali, należy opracować model opisujący proces. W ramach pracy zaproponowano model matematyczny pozwalający na obliczenia stężenia roztworu na wylocie z kolumny i stężenia substancji adsorbowanej w adsorbencie, jak również krzywych przebicia dla różnych warunków prowadzenia procesu i wymiarów samej kolumny. Obliczenia prowadzono w środowisku obliczeniowym Matlaba z zastosowaniem własnych algorytmów obliczeniowych. Model dynamiki procesu w kolumnie uwzględniał specyfikę sorpcji opisanej równaniami kinetyki: pseudopierwszego rzędu (dla sorpcji fizycznej), pseudo-drugiego rzędu (dla chemisorpcji), Elovicha (dla sorpcji chemicznej i wymiany jonowej). Forma modelu zależała od tego, które z równań kinetycznych zostało w nim uwzględnione. Otrzymano więc trzy zestawy równań służących do wyznaczania parametrów pracy kolumny. W modelu uwzględniono, że czas procesu i analizowana wysokość kolumny są ze sobą powiązane. Wybierając dwa dowolne miejsca (przekroje) wzdłuż kolumny można obliczyć odpowiadające im wartości stężeń w cieczy i ilości substancji zaadsorbowanej. Wartości te wynikają z opóźnienia czasowego dopłynięcia adsorbatu do wyższego miejsca w kolumnie (przy zasilaniu od dołu), co uwzględniono przez wprowadzenie zmiennej ξ. Identyfikacja dynamiki w kolumnie polegała na znalezieniu współczynników modelu q*. K, Deff lub β, K, Deff (w przypadku wykorzystania równania Elovicha) i porównaniu wartości obliczonych z danymi eksperymentalnymi. Wprowadzenie wartości q* wyznaczonej w oparciu o równowagę urealniło wyniki i pozwoliło na obliczenie dwóch pozostałych parametrów modelu K i De(f. Poszukiwanie współczynników identyfikujących pracę kolumny może odbywać się z wykorzystaniem metod optymalizacyjnych przeszukujących dziedzinę dopuszczalnych rozwiązań w celu znalezienia ekstremum globalnego. W pracy do tego zadania wykorzystano algorytm genetyczny. Kolejnym etapem sprawdzenia poprawności działania modelu było wykonanie obliczeń w oparciu o dane literaturowe. Wybrano układy: modyfikowane barwnikiem (Reactive Orange 13) i Na2CO3 włókno kokosowe jako biosorbent oraz roztwór wodny jonów Pb(II) jako adsorbat; trociny - Cr(VI); węgiel aktywny - Cu(II). Porównano własne obliczenia modelowe z prezentowanymi w literaturze, uzyskując wyższą jakość przybliżenia danych eksperymentalnych niż w cytowanych pracach (przy dużo mniejszym nakładzie obliczeniowym). Dla każdego z badanych układów adsorbent-adsorbat przedstawiono wartości obliczonych parametrów modelu i ocenę statystyczną na podstawie: sumy kwadratów odchyleń wartości obliczonych i eksperymentalnych, kwadratu współczynnika determinacji i średniego błędu kwadratowego. Pomyślna weryfikacja opracowanego modelu opisującego proces dynamiki w kolumnie laboratoryjnej pozwala, aby w dalszym etapie rozważań przejść do problematyki powiększania skali i sterowania/kontrolowania on-line procesem przemysłowym.
EN
Water for the needs of industry and people must satisfy strictly determined requirements. To absorb pollutants from solutions, the process of adsorption with the use of solid adsorbents with strongly developed surface is applied. In the last decade a growing interest is observed in inexpensive and very cheap adsorbents to remove heavy metal ions. For our investigations adsorbents from various groups were selected: - activated carbon: most frequently discussed in the literature and used as a reference material to verify model calculations. - freeze-dried chitosan: a relatively new sorbent recommended to remove heavy metal ions, - clinoptilolite: a cheap mineral sorbent extracted in Poland used also to remove heavy metal ions from diluted solutions, - buckwheat hulls: an innovative material belonging to the so-called low-cost sorbents, readily available in Poland due to the specificity of our agriculture. In each case, a probable mechanism of binding heavy metal ions with the adsorbent is shown. The present state of knowledge on the determination and mathematical description of sorption isotherms from liquid solutions and phenomena occurring in the solution, on the surface and inside adsorbent particles are discussed in the study. Next, the mechanisms of adsorption in a packed column are presented. The most widely used, classical mass balance and the possibilities of calculating values which characterize column operation, such as diffusion coefficients, the height of mass transfer zone, etc. are considered. Experimental procedures are presented further in the study. Once adsorption equilibrium had been measured, experiments were carried out in a laboratory column. In both cases multicomponent solutions of heavy metal ions, i.e. Cu(II), Zn(II) and Ni(II), were used. Additionally, a possibility of applying artificial neural networks to describe sorption equilibrium in multicomponent systems is considered in the study. Further on, in engineering considerations, after choosing a promising adsorbent and carrying out preliminary investigations in a small scale, a model describing the process should be developed. A mathematical model to calculate the concentration of solution at the column outlet and the concentration of adsorbed substance in the adsorbent, as well as breakthrough curves for different process conditions and column dimensions was proposed in the study. Calculations were carried out in the Matlab computing environment. The model of process dynamics in the column took into account the specificity of sorption described by the kinetic equations of pseudo-first order (for physical sorption), pseudo-second order (for chemisorption) and Elovich equation (for chemical sorption and ion exchange). The model equations assumed forms which depended on which kinetic equation had been considered. Hence, three sets of equations were obtained to determine the column operation parameters. It was taken into account in the model that the process time and analyzed column height were interrelated. Two analyzed places in the column, both for the liquid and adsorbent, were delayed in time in relation to each other which was reflected by introducing variable ξ. Identification of the column dynamics consisted in finding model coefficients q*, K and Deff, or β , K and Deff when the Elovich equation was used, and comparing the calculated values with experimental data. Introduction of the value of q* determined on the basis of equilibrium made the results realistic and allowed us to calculate two other model parameters, i.e. K and Deff. Searching for the coefficients which identify the column operation can involve the use of optimization methods to find the area of feasible solutions in order to obtain a global extremum. To fulfill this task a genetic algorithm is applied in the study. A subsequent stage in the model verification were calculations based on literature data. The following systems were selected: modified with Reactive Orange 13 dye and Na2CO3 coconut fiber as a biosorbent and water solution of Pb(II) ions as an adsorbate; sawdust-Cr(VI); activated carbon-Cu(II). The model calculations were compared with those presented in the literature and the obtained approximation of experimental data appeared to be better than in the quoted studies (at a much lower computational effort). For each tested adsorbent-adsorbate system the calculated model parameters and statistical evaluation were presented on the basis of the sum of squared deviations of calculated and experimental values, the square of the determination coefficient and mean square error. A successful verification of the proposed model which describes process dynamics in the column is an encouragement for scaling-up and on-line control of an industrial process in the future.
Rocznik
Tom
Strony
5--172
Opis fizyczny
Bibliogr. 225 poz.
Twórcy
  • Katedra Termodynamiki Procesowej, Politechnika Łódzka
Bibliografia
  • [1] Aarden F.B., Adsorption onto heterogenous porous materials: equilibria and kinetics, CIP - Data Libary Technische Universiteit Eindhoven, (2001).
  • [2] Abo-Fara S.A., Abdel-Aal A.Y., Ashour I.A., Garamon S.E., Removal of some heavy metal cations by synthetic resin purolite C100, J. Hazard. Mat., 169, (2009), 190-194.
  • [3] Adamski W., Grochulska-Segal E., Markiewicz J., Modelowanie zjawisk procesu koagulacji-adsorpcji w złożu granulowanego węgla aktywnego, Ochrona Środowiska, 3, 86, 3-7, (2002).
  • [4] Aharoni C., Tompkins F.C., Kinetics of adsorption and desorption and the Elovich equation. In: D.D. Eley, H. Pines and P.B. Weisz, Editors, Advances in Catalysis and Related Subjects, vol. 21, Academic Press, New York (1970), 1-49.
  • [5] Ahmad A., Rafatullah M., Sulaiman O., Ibrahim M.H., Chii Y.Y., Siddique B.M., Removal ofCu(II) and Pb(II) ions from aqueous solution by adsorption on sawdust ofmeranti wood, Desalination, 247,1-3, (2009), 639-646.
  • [6] Ajmal M., Khan A.H., Ahmad S., Ahmad A., Role of sawdust in the removal ofcopper(II) from industrial wastes, Water Research, 32, 10, (1998), 3085-3091.
  • [7] Al-Asheh S., Banat F., Abu-Aitah L., Adsorption of phenol using different types of activated bentonites, Sep. Purif. Technol., 33,1, (2003), 1-10.
  • [8] Anielak A.M., Chemiczne i fizykochemiczne oczyszczanie ścieków, PWN Warszawa (2000).
  • [9] Annadurai G., Adsorption of basic dye on strongly chelating polymer: batch kinetics studies, Iran Polym. J., 11, (2002), 237-244.
  • [10] Aydin H., Bulut Y., Yerlikaya C., Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents, J. Envir. Management, 87, 1, (2008), 37-45.
  • [11] Baba Y., Hirakawa H., Selective Adsorption of Palladium(II), Platinum(IV), and Mercury(II) on a New Chitosan Derivative Possessing Pyridyl Group, Chemistry Letters, 21, 10, (1992), 1905.
  • [12] Babu B.V., Gupta S., Modeling and simulation of fixed bed adsorption column: Effect of velocity variation, Journal on Engineering & Technology, 1, (2005), 60-66.
  • [13] Batzias F., Sidiras D., Schroeder E., Weber C., Simulation of dye adsorption on hydrolyzed wheat straw in batch and fixed-bed system, Chem. Eng. J., (2009) 148, 459-472.
  • [14] Bautista L.F., Martinez M., Aracil J., Adsorption of a-amylase a fixed bed; operating efficiency and kinetic modeling, AIChE, 49, (2003), 2631-2641.
  • [15] Becker T., Schlaak M., Strasdeit H., Adsorption ofnickel(II), zinc(II) and cadmium(II) by new chitosan derivatives, Reactive & Functional Polymers, vol. 44, (2000), 289-298.
  • [16] Benaissa H., Benguella B., Effect of anions and cations on cadmium sorption kinetics from aqueous by chitin: experimental studies and modeling. Environmental Pollution, 130, (2004), 157-163.
  • [17] Benguella B., Benaissa H., Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies, Water Research, vol.36, (2002a), 2463-2474.
  • [18] Benguella B., Benaissa H., Effects of competing cations on cadmium biosorption by chitin, Colloids and Surfaces, vol. 201, (2002b), 143-150.
  • [19] Bernardin Jr, FE., Experimental design and testing of adsorption and adsorbates. In: Slejko FL, ed. Adsorption technology: a step-by-step approach to process evaluation and application, [chapter 2], New York, (1985), 37-90.
  • [20] Blanco A., Sanz B., Llama M.J., Serra J.L., Reutilization of non viable biomass of phormidum laminosum for metal biosorption, Biotechnol. Appl. Biochem., 27,(1998), 167-174.
  • [21] Bodzek M., Konieczny K., Wykorzystanie procesów membranowych w uzdatnianiu wody, Of. Wyd. Projprzem-EKO, Bydgoszcz 2005.
  • [22] Brunauer S., Emmett P.H., Teller E., Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, (1938), 309-319.
  • [23] Brunauer S., The adsorption of gases and vapors: Physical Adsorption. Princeton University Press, New Jersey, (1945).
  • [24] Bulsari A.B., Neural Networks for Chemical Engineers, Computer-Aided Chemical Engineering, 6, (ed.) A.B. Bulsari, Elsevier Sci., Amsterdam (1995).
  • [25] Cengiz S., Cavas A., A promising evaluation method for dead leaves of P. oceanica in the adsorption of methyl violet, Mar. Biotech. (2010), 12, 728-736.
  • [26] Cestari A.R., Vieira E.F.S., Pinto A.A., Lopes E.C.N., Multiple adsorption of anionic dyes on silica/chitosan hybrid 1. Comparative kinetic data from liquid- and solid-phase models, J. Colloid Int. Sci., 292, (2005), 363-372.
  • [27] Chang M.Y., Juang R.S., Equilibrium and kinetic studies on the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers, Colloid Surf A: Physicochem Eng Aspects, 269 (2005), 35-46.
  • [28] Charlet L., Tournassat Ch., Fe(ll)-Na(Il)-Ca(Il) cations exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride - metal ion pairs in seawater, Aquatic Geochem., 11, (2005), 115-137.
  • [29] Chassary P., Vincent T., Guibal E., Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use, Reactive and Functional Polymers, 60, (2004), 137-149.
  • [30] Chatterjee S., Chatterjee S., Chatterjee B.P., Das A.R., Guha A.K., Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads, J. Colloid Int. Sci., 288, (2005), 30-35.
  • [31] Chehnicki W., Woda, zasoby, degradacja, ochrona, PWN, Warszawa (2000).
  • [32] Chen J.P., Yoon J.-T., Yiacoumi S., Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns, Carbon, 41,(2003), 1635-1644.
  • [33] Chern J.M., Huang S.N., Study of nonlinear wave propagation. 1.Dye adsorption by activated carbon, Ind. Eng. Chem. Res., 37, (1998), 253-257.
  • [34] Chiou M.S., Li H.Y., Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, Chemosphere, 50, 1095-1105, (2003).
  • [35] Chiou M.S., Li H.Y., Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads, J. Hazard Mater., B93, (2002), 233-248.
  • [36] Choi K.S., Ahn H.S., A study of synthesis of crosslinked chitosan phosphate and adsorption characteristics of metallic ions; Polymer (Korea) 14, (1990), 516-526.
  • [37] Choma J., Zdenkowski J.A., Strukturalne i powierzchniowe właściwości wybranych adsorbentów mineralnych, Ochr. Środ. 4, 83, (2001), 5-8.
  • [38] Chong K.H., Volesky B., Metal biosorption equilibria in ternary system, Biotech. & Bioeng., (1996), 49, 629-639.
  • [39] Chui V.W.D., Mok K.W., Ng C.Y., Luong B.P., Ma K.K., Removal and recovery of copper(II), chromium(II), and nickel(H) from solutions using crude shrimps chitin packed in small columns, Environ. Internat., 22, 4, (1996), 463-468.
  • [40] Crank J., The mathematics of diffusion (2nd ed), Clarendon Press, Oxford (1975).
  • [41] Crini G., Badot P.-M., Application of chitosan, a natural aminopolysacchari.de, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog in Polymer Sci., 33, (2008), 399-447.
  • [42] Crini G., Robert C., Gimbert F., Martel B., Adam O., De Giorgi F., The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies, Journal of Hazardous Materials, 153, 1-2, (2008), 96-106.
  • [43] Davis L., Handbook of genetic algorithms, Van Nostrand Reinhold, New York (1991).
  • [44] Dąbrowski A., Adsorption - from theory to practice, Adv. Coll. & Interf. Sci., (2001), 93, 135-224.
  • [45] Dubinin M.M., Radushkevich L.V.H., Proc. Acad. Phys. Chem. USSR., 55, (1947), 331.
  • [46] Dubinin M.M., Astakhov V.A., Izvest. Akad. Nauk SSSR (ser. khim.) 11, (1971), p. 5.
  • [47] Duffus J. H., "Heavy metals" a meaningless term? (IUPAC Technical Report), Pure Applied Chemistry, 74, (5), (2002), 793-807.
  • [48] Dutta P.K., Durga Bhavani K., Sharma N., Adsorption for dyehouse effluent by low cost adsorbent (chitosan), Asian Textile J., 10, (2001), 57-63.
  • [49] Engell S., Toumi A., Optimization and control of chromatography, Computers and Chemical Engineering, 29, (2005), 1243-1252.
  • [50] Erdem E., Karapinar N., Donat R., The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280, (2004), 309-314.
  • [51] Feng N., Guo X., Liang S., Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mat., 164, 2-3, (2009), 1286-1292.
  • [52] Ferrero F., Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust, J. Hazard. Mater. 147, (2007), 144-152.
  • [53] Fogel D.B., An introduction to simulated evolutionary optimization, IEEE Transactions on Neural Networks, (5), 1, (1994), 3-14.
  • [54] Fourest E., Etude des mecanismes de biosorption des metaux lourds par des biomasses fongiques industrielles en vue d’un procede d’epurationdes efluents aqueux contamines, These de doctorat, USTM, Grenoble, France, (1993).
  • [55] Freundlich H.M.F., Uber die adsorption in losungen (Over the adsorption in solution), J. Phys. Chem., 57, (1906), 385-471.
  • [56] Gałach M., Weryński A., Compartmental model of fluid and solute absorption in peritoneal dialysisbio-algorithms and med-systems, Journal edited by Medical College - Jagiellonian University, Vol. 1, No. 1/2, (2005), 209-212.
  • [57] Gambuś F., Gorlach E., Pochodzenie i szkodliwość metali ciężkich, Aura, 6, (2001), 11-13.
  • [58] Gercel O., Gercel H.F., Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida, Chem. Eng. J. 132, 1-3, (2007), 289-297.
  • [59] Gibbs G., Tobin J.M., Guibal E., Adsorption of acid green 25 on chitosan: influence of experimental parameters on uptake kinetics and adsorption isotherms, J. Appl. Polym. Sci., 90, (2003), 1073-1080.
  • [60] Giles C.H., Smith D., Huitson A., A general treatment and classification of the solute adsorption isotherms—I. Theoretical, J. Coll. Int. Sci., 47, (1974a), 755-765.
  • [61] Giles C.H., D’Silva A.P., Easton I.A., A general treatment and classification of the solute adsorption isotherms—II. Experimental interpretation, J. Coll. Int. Sci., 47, (1974b), 766-778.
  • [62] Gloaguen V., Morvan H., Removal of heavy metal ions from aqueous solution by modified barks, J. Environ., Science & Health, A32, 4, (1997), 901-912.
  • [63] Gok O., Ozcan A.S., Ozcan A., Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions, Desalination, 220, (2008), 96-107.
  • [64] Gomonaj V.I., Golub N.P., Szekeresh K.Y., Leboda R., Skubiszewska-Zięba J., Badania nad przydatnością zakarpackiego klinoptylolitu do sorpcji jonów Hg(II), Cr(III) i NI(II) z roztworów wodnych, Ochrona Środowiska, 4, 71, (1998), 3-6.
  • [65] Gomółka E., Szaynok A., Chemia wody i powietrza, Wrocław (1986).
  • [66] Gonzales-Davila M., Santana-Casino J.M., Millero F.J., The adsorption ofCd(II) and Pb(II) to chitin in seawater, J.Coll. Interface Sci., 137, (1990), 102-110.
  • [67] Górecka D., Dziedzic K., Sell S., Wpływ zabiegów technologicznych stosowanych podczas produkcji kaszy gryczanej na zawartość błonnika pokarmowego, Nauka Przyroda Technologie, 4, 2, (2010), 1-9.
  • [68] Górski M., Gospodarowanie wodami śródlądowymi w prawie polskim i Unii Europejskiej, Mat. XVII Kraj. Konf., V Międzynar. Konf. Zaopatrzenie w wodę i jakość wód, Poznań 2002, 39-60.
  • [69] Guibal E., Interactions of metal ions with chitosan-based sorbents: a review, Separation and Purification Technology, vol. 38, (2004), 43-74.
  • [70] Guibal E., Saucedo I., Jansson-Charrier M., Delanghe B. Le Cloirec P., Uranium and vanadium sorption by chitosan and derivatives, Water Science and Technology, 30, 9, IWA Publishing (1994), 183-190.
  • [71] Guibal E., Touraud E., Roussy J., Chitosan interactions with metal ions and dyes: dissolved-state vs. solid-state application, World J. Microbiol Biotechnol., 21, (2005), 913-920.
  • [72] Gupta S., Babu B.V., Modeling, simulation, and experimental validation of continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent, Bioresource Technology, 100, (2009), 5633-5640.
  • [73] Gyliene O., Rekertas R., Salkauskas M., Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestics) larva shells, Water Research, vol. 36, (2002), 4128-4136.
  • [74] Halosava M., Fiedlerova V., Smrrinova H., Orsak M., Lachman L., Vavreinova S., Buckwheat - the source of antioxidant activity in functional foods. Food Res. Int. 35, (2002), 207-211.
  • [75] Harris P.J.F., Liu Z., Suenaga K., Imaging the atomic structure of activated carbon, J. Phys. Condens. Master, 20, (2008) 362201 (5pp).
  • [76] Harry S., The theory of coloration of textiles. In: A. Johnson, Editor, Thermodynamics of dye adsorption (2nd ed), Society of Dyers and Colorists, West Yorkshire, UK (1989), p. 255.
  • [77] Hasany S.M., Saeed M.M., Ahmed M., Sorption and thermodynamic behavior of zinc(II)-thiocyanate complexes onto polyurethane foam from acidic solutions, Journal of Radioanalytical and nuclear Chemistry, 252, (2002), 477-484.
  • [78] Haykin S., Neural Networks. A Comprehensive Foundation, Macmillan College Publishing Company, New York (1994).
  • [79] Heil G., Untersuchunger zum transport-mechanismas bei der adsorption organischer stoffe aus wasringen losungen an aktivkohole, Dissertation Karlsruhe University, (1971).
  • [80] Heras A., Rodriguez N.M., Ramos V.M., Agulló E., N-Methylene phosphonic chitosan: A novel soluble derivative, Carbohydrate Polymers, 44, (2001), 1-8.
  • [81] Hinz Ch., Description of sorption data with isotherm equations, Geoderma, vol. 99, (2001), 225-243.
  • [82] Hirasaki G., NMR imaging in chemical engineering, Chapter 3. Porous material, Wiley-VCH Verlag GmbH & KGaA, (ed.) S. Stapf, S.I. Han, (2006).
  • [83] Ho Y.S., Huang C.T., Huang H.W., Equilibrium sorption isotherm for metal ions on tree fern, Process Biochemistry, 37, (2002), 1421-1430.
  • [84] Ho Y.S., McKay G., Kinetic models for the adsorption of dye from aqueous solution by wood, Trans. Chem. Eng., 76 (1998), 183-191.
  • [85] Ho Y.S., Review of second-order models for adsorption systems, J. Hazard. Mater. B136 (2006), 681-689.
  • [86] Holland J.H., Hierarchical Descriptions of Universal Spaces and Adaptive Systems, (Tech. Report ORA Projects 01252 & 08226), Ann Arbor, Univ. of Michigan (1968).
  • [87] Holland J.H., Genetic Algorithms and Classifier Systems, Foundation and Future Directions, II Int. Conf. on Genetic Algorithms, (1987), 82-89.
  • [88] Hu Z.G., Zhang J., Chan W.L., Szeto Y.S., The adsorption of acid dye onto chitosan nanoparticles, Polymer 47, (2006), 5831-5837.
  • [89] Imamoglu M., Tekir O., Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228, (2008), 108-113.
  • [90] Inoue K., Yosizuka K., Ohto K., Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan, Analytica Chimica Acta, vol. 388, (1999), 209-218.
  • [91] Ishii H., Minegishi M., Lavitpichavawong B., Mitani T., Synthesis of chitosan-aminoacid conjugates and their use in heavy metals uptake, Int. J. Biol. Macromolecules, 17, 1, (1995), 21-23.
  • [92] Jaworska M., Kula K., Chassary P., Guibal E., Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties, Polymer International, 52, 2, (2003), 206-212.
  • [93] Jeon C., Hoell W.H., Chemical modification of chitosan and equilibrium study for mercury ion removal, Water Research. 37, 19, (2003), 4770-4780.
  • [94] Jeon C., Park K.H., Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead, Water Research, 39, 16, (2005), 3938-3944.
  • [95] Jiang Y., Pang H., Liao B., Removal of copper (II) ions from aqueous solution by modified bagasse, J. Hazard. Mat., 164, 1, (2009), 1-9.
  • [96] Juang R.S., Shao H.J., A simplified equilibrium model for sorption of heavy metal ions from aqueous solution of chitosan, Water Research, 36, (2002), 2999-3008.
  • [97] Juang R.S., Tseng R.L., Wu F.C., Lee S.H., Adsorption behavior of reactive dyes from aqueous solutions on chitosan, J. Chem. Tech. Biotechnol., 70, (1997), 391-399.
  • [98] KalUs G., Butler D., The UE water framework directive: measures and implications, Water Policy 3, (2001), 125-142.
  • [99] Kamiński W., Tomczak E., Zastosowanie algorytmów genetycznych w inżynierii chemicznej i procesowej. Inż. Chem. i Proc. (1998), 281-295.
  • [100] Kamiński W., Strumiłło P., Tomczak E., Zastosowanie systemów sztucznej inteligencji w rozwiązywaniu wybranych problemów ochrony środowiska, Wyd. PAN, Oddział w Łodzi, Komisja Ochrony Środowiska. Łódź (2005).
  • [101] Kamiński W., Tomczak E., Algorytmy genetyczne w zastosowaniu do identyfikacji kinetyki degradacji produktów zawierających witaminę C, II Krajowa Konf. Algorytmy Ewolucyjne i Optymalizacja Globalna, Rytro (1997), 105-112.
  • [102] Kamiński W., Tomczak E., An Integrated Neural Model for Drying and Degradation of Selected Products, Drying Techn., 17, 7&8, (1999), 1291-1302.
  • [103] Kamiński W., Tomczak E., Jaros K., Interactions of metal ions sorbet on chitosan beads, Desalination, 218, (2008), 281-286.
  • [104] Kamiński W., Tomczak E., Jaros K., Kinetyka sorpcji jonów metali ciężkich z roztworów wieloskładnikowych na sorbencie chitozanowym, XIX Ogólnopolska Konferencja Inżynierii Chemicznej i Procesowej, t. II, Rzeszów (2007), 133-136.
  • [105] Kamiński W., Tomczak E., Wilicka U., Metal ions sorption equilibrium on chitosan foamed structure, Computer Aided Engineering, ed. J. Jeżowski and J. Thullie, Elsevier, (2009), 1203-1207.
  • [106] Kamio E., Matsumoto M., Kondo K., Uptakes of rare metal ionic species by a column packed with microcapsules containing an extractant, Separation and Purification Technology, 29, (2002), 121-130.
  • [107] Kannan N., Balamurugan J., Removal of lead ions by adsorption onto coconut shell and dates nut carbons - A comparative study, Indian J. Environ. Prot., 25, 9, (2005), 816-823.
  • [108] Kannan N., Devi S.M., Studies on removal copper(II) and lead(II) ions by adsorption on commercial activated carbon, Indian J. Environ. Prot., 25, 1, (2005), 28-37.
  • [109] Kim B.C., Kim Y.H., Yamamoto T., Adsorption characteristics of bamboo activated carbon, Korean J. Chem. Eng., 25, 5, (2008), 1140-1144.
  • [110] King P., Srinivas P., Prasann K.Y., Prasad V.S.R.K., Sorption of copper(II) ion from aqueous solution by Tectona grandis, J. Hazard. Mat., 136, 3, (2006), 560-566.
  • [111] Klatt K.U., Hanisch F., Dunnebier G., Engell S., Model-based optimization and control of chromatografie process, Computers and Chemical Engineering, 24,(2000), 1119-1126.
  • [112] Komy Z.R., Determination of acidic sites and binding toxic metal ions on cumin surface using nonideal competitive adsorption model, J. Colloid Interface Sci., 270(2004), 281-287.
  • [113] Kosobucki P., Kruk M., Buszewski B., Immobilization of selected heavy metals in sewage sludge by natural zeolites, Bioresource Technology, 99, (2008), 5972-5976.
  • [114] Kowal A. i Świderska-Bróż M., Oczyszczanie wody, PWN, Warszawa (2003).
  • [115] Krishna B.S., Murty D.S., Prakash B.S.J., Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay, J. Coll. Interf. Sci., 229, (2000), 230-236.
  • [116] Krkoskova B., Mrazova Z., Prophylactic components of buckwheat. Food Res. Int. 38, (2005), 561-568.
  • [117] Kumar K.V., Porkodi K., Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel. J. Hazard Mater., 1, 138, 3, (2006), 633-5.
  • [118] Kumar Ravi M.N.V., A review of chitin and chitosan applications, React. Funct. Polym., 46, (2000), 1-27.
  • [119] Kurita K., Sannan T., Iwakura Y., Studies on chitin. VI. Binding of metal cations, Journal of Applied Polymer Science, 23, 2, (1979), 511-515.
  • [120] Kurowski Z., Wykorzystanie krajowych klinoptylolitów do usuwania azotu amonowego w odnowie wody. Praca doktorska, Instytut Inżynierii Ochrony Środowiska, PWr., (1978).
  • [121] Kurpisz, K., Nowak A.J., Inverse thermal problems, Computational Mechanics
  • [122] Kwietniewski M., National Report Poland, IWSA World Water Congress,(1999), IR6 25-27.
  • [123] Kyzas G.Z., Kostoglou M., Lazardis N.K., Copper and chromium(VI) removal by chitosan derivatives - Equilibrium and kinetics studies, Chem. Engn. J., 152, (2009), 440-448.
  • [124] Lagergren S., Zur theorie der sogenannten adsorption geldster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar., 24, (1898), 1-39.
  • [125] Langmuir I., The constitution and fundamental properties of solids and liquids, JACS, 38, (1916a), 2221-2295.
  • [126] Langmuir I., The adsorption gasses on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, (1916b), 1361-1368.
  • [127] Larous S., Meniai A.-H., Lechocine M.B., Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination, 185, 1-3,(2005), 483-490.
  • [128] Lee Sung-Tao, Mi Fwu-Long, Shen Yu-Ju, Shyu Shin-Shing, Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin, Polymer, 42, 5, (2001), 1879-1892.
  • [129] Li X., Tang Y., Cao X., Lu D., Luo F, Shao W., Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel, Colloids and Surfaces A: Physicochem. Eng. Aspects 317 (2008), 512-521.
  • [130] Limousin G., Gaudet J.-P., Charlet L., Szenknect S., BarthesV., Krimissa M., Sorption isotherms: A review on physical bases, modeling and measurement, Applied Geochemistry, 22, (2007), 249-275.
  • [131] Linnik, P.N., Heavy metal speciation as important characteristic of water bodies ecotoxicological state, Int. Symp. Exhib. Environ. Contam. Cent. East. Eur., Warsaw, Symp. Proc., 4th, (1998), 1240-1246.
  • [132] Long Ch., Li A., Wu H., Liu F., Ahang Q., Polanyi-based models for adsorption of naphthalene from aqueous solutions onto nonpolar polymeric adsorbents, Coll. Intrface Sci., 319, (2008), 12-18.
  • [133] Low K.S., Lee C.K., Leo A.C., Removal of metals from electroplating wastes using banana pith, Bioresource Technology, 51, (1995), 227-231.
  • [134] Lundin L.-Ch., The water scape. Book I. Water use and management. Book II. A Baltic University Programme Publication, Uppsala, (2000).
  • [135] Majeti N.V., Kumar R., A review of chitin and chitosan applications. Reactive & Functional Polymers, (2000), 46,1-27.
  • [136] Malik P.K., Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes; a case study of Acid Yellow 36, Dyes pigments, 56, 3,(2003), 239-249.
  • [137] Malik U.R., Hasany S.M., Subhani M.S., Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile, Talanta, vol. 66, (2005), 166-173.
  • [138] Malkoc E., Nuhoglu Y., Determination of kinetic and equilibrium parameters of the batch adsorption ofCr(VI) onto waste acorn of Quercus ihaburensis, Chemical Engineering and Processing, vol. 46, (2007), 1020-1029.
  • [139] Martel B., Devassine M., Crini G., Weltrowski M., Bourdonneau M. and Morcellet M., Preparation and adsorption properties of a beta-cyclodextrin-linked chitosan derivative, J. Polym. Sci. A: Polym. Chem., 39, (2001), 169-176.
  • [140] Maruca R., Jo Sudr B., Wightman J.P., Interaction of heavy metals with chitin and chitosan. III. Chromium, J. Appl. Polym. Sci., 27, (1982), 4827-4837.
  • [141] Mercer B.W., Ames L.L., Ammonia removal from wastewater. Natural zeolites -occurancse, properties use. Pergamon Press, (1976), 458-462.
  • [142] Michaels A.S., Simplified method of interpreting kinetics data in fixed-bed, Ind. Eng. Chem., 44, 8, (1952), 1922-1930.
  • [143] Milot C., McBrien J., Allen S., Guibal E., Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption', Journal of Applied Polymer Science, 68, 4, (1998), 571-580.
  • [144] Ministerstwo Zdrowia i Opieki Społecznej, Departament Zdrowia Publicznego, Kryteria zdrowotne środowiska: Chrom, Tom 61, Łódź (1992).
  • [145] Molga E., Modeling of reactive adsorption processes, Chem. & Proc. Eng., 29, (2008), 683-699.
  • [146] Mucha M., Chitozan wszechstronny polimer ze źródeł odnawialnych, WNT, (2010).
  • [147] Nawrocki J., Biłozor S., Uzdatnianie wody: procesy chemiczne i biologiczne, Wydaw. Naukowe PWN, Warszawa, Poznań (2000).
  • [148] No H.K., Meyers S.P., Application of chitosan for treatment of wastewaters, Rev. Environ. Contam. Toxicol. 163, (2000), 1-28.
  • [149] Okuyama K., Noguchi K. Kanenari M., Egawa T., Osawa K., Ogawa K., Structural diversity of chitosan and its complexes. Carbohydrate Polymers, 42,(2000), 237-247.
  • [150] Ong Soon-An, Seng Chye-Eng, Lim Poh-Eng., Kinetics of adsorption ofCu(II) and Cd(II) fromaqueous solution on rice husk and modified rice husk, E.J. Env. Agri. Food Chem., 6, 2, (2007), 1764-1774.
  • [151] Ozisik, M.N., Orlande, H.R.B., Inverse heat transfer, Fundamentals and Applications, Taylor Francis, New York (2000).
  • [152] Paderewski M.L., Procesy adsorpcyjne w inżynierii chemicznej, WNT, Warszawa (1999).
  • [153] Pehlivan E., Altun T., The study of various parameters affecting the ion exchange of Cu 2+, Zn2+, Ni2+, Cd2+ and Pb 2+ from aqueous solution on Dowex 50W synthetic resin, J. Hazard. Mat. B, 134, (2006), 149-156.
  • [154] Perez-Marin A.B., Zapata V.M., Ortuńo J.F., Aguilar M., Saez J., Llorens M., Removal of cadmium from aqueous solutions by adsorption onto orange waste, Journal of Hazardous Materials, 139, (2007), 122-131.
  • [155] Perry R.H., Perry’s chemical engineers’ handbook, 7th edition, McGraw-Hill, (1997).
  • [156] Petrus R., Warchoł J., Usuwanie metali ciężkich z roztworów wodnych na naturalnych zeolitach, Chem. i Inż. Ekol., 7, 7, (2000), 763-772.
  • [157] Petrus R., Warchoł J., Heavy metal removal by clinoptilolite. An equilibrium study in multi-component system, Water Research, 39, (2005), 819-830.
  • [158] Piron E., Accominotti M., Domard A., Interaction between Chitosan and Uranyl Ions. Role of Physical and Physicochemical Parameters on the Kinetics of Sorption; Langmuir, 13, (1997), 1653-1658.
  • [159] Polanyi M., Adsorption von Gasen (Dampfen) durch ein festes nichtfluichtiges Adsorberis, Verh. Dtsch. Phys. Ges. 18, (1916), 55-80.
  • [160] Polanyi M., Uber die Adsorption vom Standpunkt des dritten Wairmesatzes, Verh. Dtsch. Phys. Ges. 16, (1914), 1012-1016.
  • [161] Polanyi M., Verh. Deutsch. Phys. Ges., 16, (1914), 1012.
  • [162] Praca zbiorowa.: Raport o stanie środowiska w województwie łódzkim w 2000, WIOŚ, Łódź (2001).
  • [163] Qi Lifeng, Xu Zirong, Jiang Xia, Hu Caihong, Zou Xiangfei, Preparation and antibacterial activity of chitosan nanoparticles, Carbohydrate Research, 339, 16,(2004), 2693-2700.
  • [164] Qi Lifeng, Xu Zirong, Lead sorption from aqueous solutions on chitosan nonoparticles, Colloid and Surfaces A, Physicochem. Eng. Aspects, 251, (2004), 183-190.
  • [165] Ramos V.M., Rodriguez N.M., Rodriguez M.S., Heras A., Agulló E., Modified chitosan carrying phosphonic and alkyl groups, Carbohydrate Polymers, 51, 4,(2003), 425-429.
  • [166] Reiko O., Yoshimasa A., Motoi M., Effect of nitrogen species on an activated carbon surface on the adsorption of Cu(Il) ions from aqueous solution, Carbon, 48, 10, (2010), 3000.
  • [167] Repo E., Warchoł J.K., Kurniawian T.A., Sillanpaa M.E.T., Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling, Chem. Eng. J., 161, (2010), 73-82.
  • [168] Rfatullah M., Sulaiman O., Hasim R., Ahmad A., Adsorption of copper(II), chromium(II), nickel(II),and Lead(II) ions from aqueous solutions by merandi sawdust, J. Hazard. Mat., 170, 2-3, (2009), 969-977.
  • [169] Rhazi M., Desbrieres J., Tolaimate A., Rinaudo M., Vottero P., Alagui A., Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer, 43, (2002), 1267-1276.
  • [170] Richardson J., EU Water Policy: Uncertain agendas, shifting networks and complex coalitions, Environmental Politics, 3, 4, (1997), 139-167.
  • [171] Romero-Gonzales J., Peralta-Videa J.R., Rodriguez E., Ramirez S.L., Gardea-Torresdey J.L., Determination of thermodynamic parameters of CrVI) adsorption from aqueous solution onto Agave lechuguilla biomass, Journal of Chemistry and Thermodynamics, vol. 37, (2005), 343-347.
  • [172] Rutkowska D., Piliński M., Rutkowski L., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN, Warszawa-Łódź (1997).
  • [173] Rutkowski L., Metody i techniki sztucznej inteligencji. Inteligencja obliczeniowa, Wyd. Nauk. PWN, Warszawa 2005.
  • [174] Rutkowski M., Badania nad wykorzystaniem dolnośląskiej zwietrzę liny bazaltowej. Sorbenty mineralne. AGH Kraków (1991), 83-100.
  • [175] Rutkowski M., Zarys wymagań określonych Dyrektywą Ramową Unii Europejskiej w sprawie polityki wodnej, Gospodarka Wodna, Nr 7, (2003), 278-283.
  • [176] Sag Y., Aktay Y., Application of equilibrium and mass transfer models to dynamic removal of Cr (VI) ions by chitin in packed column reactor, Process Biochemistry, 36, (2001), 1187-1197.
  • [177] Saradi B.V., Rao S.R.K., Kumar Y.P., Vijetha P., Rao K.V., Kalyani G., Applicability of Freundlich and Langmuir theory for biosorption of chromium from aqueous solution using Test of Sea Urchin, Int. J. Chem. Engn., 2, 2, (2010), 139-148.
  • [178] Sari A., Tuzen M., Citak D., Soylak M., Adsorption characteristic ofCu(ll) and Pb(II) onto expanded perlite from aqueous solution, Journal of Hazardous Materials, vol. 148, (2007a), 387-394.
  • [179] Sari A., Tuzen M., Soylak M., Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay, Journal of Hazardous Materials, vol. 144, (2007b), 41-46.
  • [180] Sensoy I., Rosen R.T., Ho C.-T., Karwe M.V., Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 99, (2006), 388-399.
  • [181] Shukla A., Zhang Y., Dubey P., Margrave J.L., Shukla S.S., The role of sawdust in the removal of unwanted materials from water, J. Hazard. Mat., 95, 1-2, (2002), 137-152.
  • [182] Shukla S.R., Pai R.S., Comparison of Pb(II) uptake by coir and dye loaded coir fibres in a fixed bed column, J. Hazardous Materials, 125, 1-3, 17 (2005a), 147-153.
  • [183] Shukla S.R., Pai R.S., Removal of Pb(II) from solution using cellulose-containing materials, J. Chem. Technol. Biotechnol. 80, (2005b), 176-183.
  • [184] Smith E.H., Amini A., Lead removal in fixed beds by recycled iron material, J. Environ. Eng., 126, (2000), 58-65.
  • [185] Sprynskyy M., Lebedynets M., Zbytniewski R., Namieśnik J., Buszewski B., Ammonium removal from aqueos solution by natura zeolite. Transcarpathian modemite: kinetics, equilibrium and column test, Sep. Purif. Technol., 46, (2005), 155-160.
  • [186] Sreejalekshmi K.G., Krishnan K.A., Anirudhan T.S., Adsorption ofPb(II) and Pb(II)-citrid acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies, Journal of Hazardous Materials, 161, (2009), 1506-1513.
  • [187] Staniszewski B., Wymiana ciepła. Podstawy teoretyczne, PWN Warszawa (1980).
  • [188] Stavitskaya S.S., Mironyuk T.I., Kartel N.T., Strelko V.V., Sorption characteristics of “food fibres" in secondary products of processing of vegetable raw materials, Russian J. Appl. Chem., 74, 4, (2001), 592-595.
  • [189] Suguna M., Kumar N.S., Subbaiah M., Krishnaiaha V., Removal of divalent manganese from aqueous solution using Tamarindus indicaferut nut shell, J. Chem. Pharm. Res., 2, 1, (2010), 7-20.
  • [190] Sulaiman O., Amini Rafatullah M., Hasim., Ahmad A., Adsorption equilibrium and thermodynamic studies of copper(II) ins from aqueous solutions by oil palm leaves, Int. J. Chem. Eng., 8, (2010), A108.
  • [191] Sun T., Ho C.-T., Antioxidant activities of buckwheat extracts. Food Chem. 90,(2005), 743-749.
  • [192] Szczygieł I., Estimation of the boundary conditions in convectional heat transfer problems inverse problems in heat transfer and fluid flow, vol. 2, HTD, vol. 340, 17-24, G.S. Dulikravich and K.A. Woodburry (eds.) ASME 1997.
  • [193] Sziłow N.A., Lepin A., Prom. Fiz. Chim. 61, (1928), 1107.
  • [194] Szlachta M., Adamski W., Modelowanie skuteczności procesu adsorpcji na pylistym węglu aktywnym w układzie technologicznym oczyszczania wody, Ochrona Środowiska, 30, 2, (2008), 57-60.
  • [195] Taler J., Duda P., Rozwiązywanie prostych i odwrotnych zagadnień przewodzenia ciepła, WNT (2003), 850.
  • [196] Tarasevich Yu.I., Krysenko D.A., Polyakow V.E., Equilibria and heats of ion exchange in the system of mordenite- alkali and alkaline earth cations, Theor. Experim. Chem. vol. 42, 5, (2006), 320-326.
  • [197] Thiele A., Falk T., Tobiska L., Seidel-Morgenstern A., Prediction of elution profiles in annular chromatography, Computers and Chemical Engineering, 25,(2001), 1089-1101.
  • [198] Tien C., Adsorption calculations and modeling, Butterworth-Heinemann, Boston, Newton, MA, (1994).
  • [199] Tomczak E., Sorption equilibrium of heavy metals ions on modified chitosan beads, Ecological Chemistry and Engineering A, 15, (2008), 694-702.
  • [200] Tomczak E., Application of ANN and EA for description of metal ions on chitosan foamed structure - Equilibrium and dynamics of packed column, Computer and Chemical Engineering, 35, (2011), 226-235.
  • [201] Tomczak E., Kaminski W., Drying kinetics simulation by means of artificial neural networks, Handbook of Powder Technology, vol. 10: Handbook of Conveying and Handling of Particulate Solids, Elsevier, ed., A. Levy, H. Kalman,(2001), 569-580.
  • [202] Tomczak E., Sulikowski R., Opis równowagi i kinetyki sorpcji jonów metali ciężkich na klinoptylolicie, Inż. i Apar. Chem., 1, (2010), 113-15.
  • [203] Tomczak E., Szczerkowska D., Równowaga sorpcyjna jonów metali ciężkich na sorbentach pochodzenia roślinnego, Inż. i Apar. Chem., 1, (2010),115-117.
  • [204] Tomczak E., Szczerkowska D., Sorption from multicomponent solutions on freeze-dried chitosan, Ecol. Chem &Eng. A, 17, No 2-3, (2010), 313-322.
  • [205] Tsezos M., The role of chitin in uranium adsorption by R. arrhizus, Biotech. & Bioeng., 25, (1983), 2025-2040.
  • [206] Ucun H., Aksakal O., Yildiz E., Copper(II) and Zinc(II) biosorption on Pinus sylvestris L., J. Hazard. Mat., 161, 2-3, (2009), 1040-145.
  • [207] Uzun I., Giizel F., External mass transfer studies during the adsorptions of some dyestuffs and p-nitrophenol onto chitosan from aqueous solution, Turk J. Chem., 28,(2004), 731-740.
  • [208] Uzun I., Guzel F., Kinetics and thermodynamics of the adsorption of some dyestuffs and p-nitrophenol by chitosan and MCM-chitosan from aqueous solution, J. Colloid Int. Sci., 274, (2004), 398-412.
  • [209] Varma A., Deshpande S., Kennedy J., Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, (2004), 77-93.
  • [210] Vaughan T., Seo C.W., Marshall W.E., Removal of selected metal ions from aqueous solution using modified corncobs, Bioresour. Technol., 78, (2), (2001), 133-139.
  • [211] Void I.M.N., Varum K.M., Guibal E., Smidsrod O., Binding of ions to chitosan - selectivity studies, Carbohydrate Polymers, vol. 54, (2003), 471-477.
  • [212] Wafwoyo W., Seo C.W., Marshall W.E., Utilization of peanut shells as adsorbents for selected metals, J. Chem. Techn.&Biotech., 74, (1999), 1117-21.
  • [213] Wan Ngah W.S., Endud C.S., Mayanar R., Removal of copperfll) ions from aqueous solution onto chitozan and cross-linked chitozan beads, Reactive & Functional Polymers, vol. 50, (2002), 181-190.
  • [214] Wang X., Du Y., Liu H., Preparation, characterization and antimicrobial activity of chitosan-Zn complex, Carbohydrate Polymers, 56, (2004), 21-26.
  • [215] Weber W.J., Morris J.C., Kinetics of adsorption on carbon solution, J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89, (1963), 31-59.
  • [216] Wen Z., Liu W.Q., Fang Z.H., Liu W.P., Effects of adsorption interferents on removal of reactive red 195 dye in wastewater chitosan, J. Environ. Sci. China, 17,(2005), 766-769.
  • [217] Whitly D., An overview of evolutionary algorithms: practical issues and common pitfalls, Inform. & Software Techn., 43, (2001), 817-831.
  • [218] Whitman W.G., The Two-Film Theory of Gas Absorption; Chem. Met. Eng. (1923), 29, 146-149.
  • [219] Wichrowska B., Mulik B., Dawidowska W., Stankiewicz A., Komentarz do nowelizacji rozporządzenie Ministra Zdrowia z dnia 20 kwietnia 2010r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi, Instal, (2010), 6, 53-58.
  • [220] Wing R.E., Sessa D.J., Willet J.L., Making a Business from Biomass in Energy, Environmental, Chemicals, Fibers and Materials, R.P. Overend, E. Chomet (eds.), vol. 2, Elsevier Science, Oxford, UK, 1997,1015-1020.
  • [221] Wolborska A., Adsorption on activated carbon of p-nitrophenol from aqueous solution, Wat. Res., 23, 1, (1989), 85-91.
  • [222] Wong Y.C., Szeto Y.S., Cheung W.H., McKay G., Pseudo-first-order kinetic studies of the adsorption of acid dyes onto chitosan, J. Appl. Polym. Sci., 92,(2004), 1633-1645.
  • [223] Zamzow M.J., Echibaum B.R., Sandgren K.R. Shanks D.E., Removal of heavy metals and other cations from waste water using zeolites, Sep. Sci. & Technology, 25, 13-15, (1990), 1555-1569.
  • [224] Zemnukhova L.A., Shkorina E.D., Fedorishcheva G A., Composition of Inorganic Components of Buckwheat Husk and Straw, Russian Journal of Applied Chemistry, 78, 2, (2005), 324-328.
  • [225] Zhang K., Cheung W.H., Valix M., Roles of physical and chemical properties of activated carbon in the adsorption of lead ions, Chemosphere, 60, 8, (2005), 1129-1140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0029-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.