PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acykliczne ketony C7-C13 i wybrane ich pochodne: synteza i aktywność biologiczna

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Do badań nad poszukiwaniem nowych związków aktywnych biologicznie wykorzystano alifatyczne ketony C7-C13 o zróżnicowanej strukturze chemicznej. Zostały one otrzymane w wyniku zmodyfikowanej, ekologicznej metody katalitycznej ketonizacji kwasów karboksylowych. Ketony przekształcono w acetale, alkohole i ich octany oraz w estry glicydowe. Estry glicydowe wykorzystano jako substraty do syntezy aldehydów, analogów aldehydu C12 MNA, znanego z unikalnej charakterystyki zapachowej. Aldehydy przekształcono w bardziej trwałe acetale, alkohole i ich octany oraz w nitryle. Z 28 ketonów zsyntetyzowano 187 związków. Zarówno dla ketonów, jak i otrzymanych z nich związków określono czystość, parametry fizykochemiczne, potwierdzono ich strukturę metodami spektroskopowymi IR, 1H-NMR oraz dokonano oceny zapachowej, określając typ zapachu i próg jego wyczuwalności. Prawie wszystkie zsyntetyzowane związki były obdarzone zapachem. Utworzono tym samym grupę 200 alifatycznych związków zapachowych, spośród których 113 stanowiły związki nowe, a 190 - związki o nieznanych wcześniej właściwościach zapachowych. Większość otrzymanych związków wykazywała przyjemny zapach owocowy, tłuszczowy, kwiatowy lub korzenno-przyprawowy. Były też wśród nich związki obdarzone rzadko spotykanymi zapachami, takimi jak zapach włókna konopi, ziela pokrzywy, suszonej na słońcu pościeli, czy też bagna zwyczajnego. Dokonano analizy zależności zapachu od struktury zsyntetyzowanych związków. Zaproponowano model olfaktofora oraz określono jakie cechy strukturalne cząsteczek są niezbędne do wystąpienia zapachu grzybowego, gruszkowego i cytrusowo-ambrowego charakterystycznego dla aldehydu C12 MNA. Stosując biokatalizowaną enancjoselektywną syntezę, otrzymano 6 enancjo-merycznie czystych undekanoli i 6 ich octanów. Wykazano, że enancjomery tych związków różnią się typem zapachu, zachowują jednak nuty tworzące zapach racematu. Wszystkie otrzymane enancjomery mogą być wykorzystane jako optycznie czynne związki zapachowe. Zbadano aktywność biologiczną obejmującą właściwości immunologiczne, przeciwnowotworowe i mikrobiologiczne undekanonów i ich acetali oraz racemicznych i enancjomerycznie czystych undekanoli i ich octanów. W badaniach immunologicznych określono wpływ inhalacji tymi związkami na mechanizmy obronne i produkcję przeciwciał u myszy oraz na produkcję cytokin angiogennych przez limfocyty śledzion myszy in vivo. Najkorzystniejszą aktywnością immunostymulującą charakteryzowały się undekan-2-on, racemat i (R)-(-)-enancjomer undekan-2-olu oraz acetale etylenowe i propylenowe undekan-2-onu i undekan-4-onu. Słabszą aktywność wykazywały octany undec-2-ylu i undec-3-ylu. Zbadane związki stanowią cenne immunostymulujące surowce zapachowe, potencjalne składniki aromatów spożywczych i kompozycji perfumeryjnych, w produktach przeznaczonych szczególnie dla rekonwalescentów. W ocenie wpływu inhalacji badanymi związkami na wzrost prze-szczepialnego mięsaka Sarcoma L-1 u myszy najskuteczniejszy okazał się (R)-(-)-octan undec-2-ylu, undekan-3-ol i acetal propylenowy undekan-4-onu. W badaniach mikrobiologicznych określono właściwości przeciwbakteryjne badanych związków wobec bakterii gramdodatnich Bacillus subtilis, bakterii gramujemnych Escherichia coli, a także właściwości przeciwgrzybowe wobec drożdży Candida mycoderma i pleśni Aspergillus niger. Undekanony wykazywały niską aktywność antybakteryjną, natomiast efektywnie działały na grzyby, przy czym silniej na pleśnie niż na drożdże. Acetal etylenowy undekan-2-onu skuteczniej hamował rozwój bakterii niż pleśni. Undekanole wykazywały działanie bakteriostatyczne wobec B. subtilis, działały też na pleśnie A. niger, przy równoczesnym braku aktywności wobec drożdży. Estry undekanoli charakteryzowały się najsłabszym działaniem anty-drobnoustrojowym. Stwierdzono zróżnicowaną aktywność antydrobnoustrojową enancjomerów undekan-2-olu. Działanie statyczne i bójcze wobec bakterii B. subtilis i pleśni A. niger, podobne do racematu, wykazywał (S)-(+)-undekan-2-ol. Aktywność enancjomeru (R) była zdecydowanie niższa. Oba enancjomery octanu undec-2-ylu wykazywały porównywała aktywność inhibitującą i bójczą wobec bakterii B. subtilis. Undekanole i undekanony mogą być wykorzystane, w uzupełniającym się działaniu, jako inhibitory wzrostu bakterii gramdodatnich B. subtilis i pleśni A. niger, powszechnie występujących w powietrzu i zanieczyszczających produkty spożywcze.
EN
Aliphatic ketones C7-C13 with different chemical structures were used in a study designed to identify new biologically active compounds. They were obtained by a modified catalytic method of carboxylic acid ketonization. The ketones were converted to acetals, alcohols and their acetates, and glycidyl esters. Glycidyl esters were used as substrates for the synthesis of aldehyde analogues of aldehyde C12 MNA, which is known for its the unique odor characteristics. The aldehydes were converted into the more stable acetals, alcohols and their acetates, and nitriles. In total, 28 ketones were converted into 187 compounds. The purity and physicochemical parameters of both ketones and compounds derived from them were determined, their structure was confirmed by IR and 1H-NMR spectroscopic methods, and they were assessed in terms of type of odor and the threshold of its perceptibility. All of the synthesized compounds had some odor. Thus, 200 aliphatic odorants were formed, of which 113 were new compounds and 190 -compounds of previously unknown odor characteristics. The vast majority of the compounds obtained showed pleasant fruity, fatty, floral or spice odors. Some of them were also endowed with rarely encountered odors such as the odor of hemp fiber, nettle, linen dried in the sunshine or Dutch myrthe. The relationship between the structure of synthesized compounds and their odors was analyzed. An olfactophore model was proposed and it was determined what structural features are necessary for the mushroom, pear and citrus-ambergris flavors characteristic of aldehyde C12 MNA to occur. By means of enantioselective biocatalyzed synthesis, six enantiomerically pure undecanols and 6 acetates of those undecanols were obtained. It was shown that the enantiomers of these compounds differ in terms of odor, but retain the flavors constituting the odor of the racemate. All of the obtained enantiomers can be used as optically active odorants. The biological activity (including immunological, anti-tumor and microbiological properties) of undecanones, their acetals, and racemic and enantiomerically pure undecanols and their acetates was examined. The immunological study concerned the influence of the inhalation of those compounds on the defense mechanism and antibody production in mice and on the production of angiogenic cytokines by mouse spleen lymphocytes in vivo. The most preferred immunostimulatory activity was observed in undekan-2-one and undekan-2-o1 and in ethylene and propylene acetals of undekan-2-one and undekan-4-one. (R)-(-)-undekan-2-o1 exhibited stronger immunostimulatory properties than its enantiomer. In turn, the immunostimulatory activity found in mice which inhaled either enantiomer of undec-2-y1 acetate was similar. The examined compounds are valuable immunostimulatory odorants which could potentially be used as components of food flavors and perfumes, especially in products designed for convalescents. The impact of inhalation with the tested compounds on the growth of transplantable Sarcoma L-1 in mice was also assessed. The growth of the Sarcoma L-1 was inhibited most effectively by inhalation of (R)-(-)-undec-2-y1 acetate, undekan-3-o1 and undekan-4-one propylene acetal. The antibacterial and antifungal properties of the identified compounds were studied in a microbiological investigation involving the following species: Gram-positive bacteria Bacillus subtilis, Gram-negative bacteria Escherichia coli, yeast Candida mycoderma and mold Aspergillus niger. Undecanones displayed low antibacterial activity but were effective against fungi, and especially molds. Undekan-2-one ethylene acetal showed fairly good antimicrobial activity, as it inhibited the growth of bacteria and fungi and had some biocidal effect against fungi them. Undecanols showed a bacteriostatic effect with no activity against yeasts. Undekanol esters were characterized by the weakest antimicrobial action. Undekan-2-o1 enantiomers differed in their antimicrobial activity: while static and biocidal effects against bacteria B. subtilis and mold A. niger, similar to those of the racemate, were displayed by (S)-(+)- undekan-2-ol, the activity of the (R)-enantiomer was significantly lower. Both enantiomers of undec-2-yl acetate showed similar inhibitive and biocidal activity against bacteria B. subtilis. Undecanofs and undecanones may be used in a complementary manner as growth inhibitors against Gram-positive bacteria B. subtilis and molds A. niger, which commonly occur in the air and easily penetrate food products.
Rocznik
Tom
Strony
3--143
Opis fizyczny
Bibliogr. 201 poz.
Twórcy
autor
  • Instytut Podstaw Chemii Żywności, Wydział Biotechnologii i Nauk o Żywności, Politechnika Łódzka
Bibliografia
  • [1] Obrębowski A., Uwagi do mechanizmu percepcji węchowej, Otolaryngol. Pol., 2002, 56, 141-145.
  • [2] Buck L., Axel R., A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Cell, 1991, 65, 175-187.
  • [3] Kraft P., Bajgrowicz J.A., Denis C., Frater G., Odds and trends: recent developments in the chemistry of odorants, Angew. Chem. Int. Ed., 2000, 39, 2980-3010.
  • [4] Frater G., Bajgrowicz J.A., Kraft P., Fragrance Chemistry, Tetrahedron, 1998, 54, 7633-7703.
  • [5] Surburg H., Panten J., Common fragrance and flavor materials: preparation, properties and uses, Viley-VCH, Verlag GmbH&Co. KGa A, Weinheim, 2006.
  • [6] EC, Fragrance allergy in consumers. SCCNFP/0017/98 Final 1999.
  • [7] Bauer K., Garbe D., Surburg H., Common Fragrance and Flavor Materials, VCH, Weinhem, 1990.
  • [8] Grosch W., Aromastoffe aus der Lipidperoxidation, Fat. Sci. Techn., 1989,91,1-6.
  • [9] Hiisnii Can Baser K., Ózek T., Beis S.H., Constituents of the essential oil of Ruta chalepensis L. from Turkey, J. Essent. Oil Res., 1996, 8, 413-414.
  • [10] Bagchi G.D., Dwivedi P.D., Singh A., Haider F., Naqvi A.A., Variations in essential oil constituents at different growth stages of Ruta chalepensis on cultivation at North Indian plains, J. Essent. Oil Res., 2003, 15, 263-264.
  • [11] Rustaiyan A., Khossaravi M., Sultani-Lotfabadi F., Yari M., Masoudi S., Monfared A., Constituents of the essential oil of Ruta chalepensis L. from Iran, J. Essent. Oil Res., 2002, 14, 378-379.
  • [12] Lawrence B.M., Reynolds R.J., Progress in essential oils. Rue oil, Perf. Flav., 1998, 23(6), 50-52.
  • [13] Pino J., Rosado A., Fuentes V., Leaf oil of Ruta graveolens L. grow in Cuba, J. Essent. Oil Res., 1997,9, 365-366.
  • [14] Yaacob K.B., Abdullah C M., Essential oil of Ruta graveolens L., J. Essent. Oil Res. 1989, 1,203-207.
  • [15] Lawless J., The encyclopedia of Essential Oils, Element Books Limited, Shaftesbury, 1999.
  • [16] Góra J., Lis A., Olejek goździkowy, Aromaterapia, 1999,5,5-11.
  • [17] Burdock G.A., Ed. Handbook of Flavor Ingredients, CRC Press, Boca Raton, 2002,
  • [18] Brophy J.J., Goldsack R.J., Forster P., Hutton I., Composition of the leaf of the Australia and Lord Howe Island species of Zanthoxylum (Rutaceae), J. Essent. Oil Res., 2000, 12, 285-291.
  • [19] Ahmed R., Choudhury S., Vajczikova I., Leclercq P.A., Essential oils of Glycosmis pentaphylla (Cor.). A new report from Assam India, J. Essent. Oil Res.,2000, 12, 471-474.
  • [20] Fischer D.C., Limberg R.P., Henriques A.T., Moreno P.R., Essential oils from fruits and leaves of Siparuna guianensis (Aubl.) Talusne from Southeastern Brazil.,/. Essent. Oil Res., 2005, 17, 101-102.
  • [21] Viana F., Andrade-Neto M., Pouliquen Y.B., Lucie V.G., Chemical composition of the essential oil from roots of Philodendron acutatum Schott, J. Essent. Oil Res., 2002, 14, 172-174.
  • [22] Cougiu R., Falconieri D., Marongiu B., Piras A., Porcedda S., Extraction and isolation of Pistacia lentiscus L. essential oil by supercritical CO2, Flavour Fragr. J., 2002, 17, 239-244.
  • [23] Shahi A.K., Tava A., Essential oil composition of three Cymbopogon Species of Indian Thar Desert, J. Essent. Oil Res., 1993, 5, 639-643.
  • [24] Lawrence B.M., Reynolds R.J., Progress in essential oils. Neroli oil and orange flower isolates. Sugandha kokila oil, Perf. Flav., 1997, 22(6), 45-59.
  • [25] Lawrence B.M., Reynolds R.J., Progress in essential oils. Ginger oil, Perf. Flav., 1991, 16(6), 53-58.
  • [26] Lawrence B.M., Reynolds R.J., Progress in essential oils. Rose oil and extracts, Perf. Flav., 1991, 16(3), 43-77.
  • [27] Demirci B., Baser K.H.C., Yildiz B., Bahcecioglu Z., Composition of the essential oils of six endemic Salvia spp. from Turkey, Flavour Fragr. J., 2003, 18,116-121.
  • [28] Choudhury S.N., Ghosh A.C., Choudhury M., Leclercq P.A., Essential oils of Litsea monopetala (Roxb.). A new report from India, J. Essent. Oil Res., 1997, 9, 635-639.
  • [29] Andrade-Neto M., Cunha U., Mafezoli J., Silveira E., Volatile constituents of different populations of Pilocarpus spicatus Saint Hill. (Rutaceae) from the Northeast of Brazil, J. Essent Oil Res., 2002, 14, 319-323.
  • [30] Lawrence B.M., Reynolds R.J., Progress in essential oils. Rose oil, Perf. Flav., 1997, 22, 57-66.
  • [31] Yang J., Li W.L., Harper W.J., Use of solid phase microextraction of volatile compounds in whey protein concentrates, Milchwissenschaft, 1998, 53, 209-212; Chem. Abstr., 1998, 129, 53505.
  • [32] Arragia A.M.C., Machado M.I.L., Gomes G.A., Craveiro A.A., Volatile constituents from roots of Bowdichia virgilioides Kunt., J. Essent. Oil Res., 1998, 10, 205-206.
  • [33] Chisowa E.H., Hall D.R., Farman D.I., Didley I., Volatile constituents of the essentials oil of Cymbopogon citratus Stapf. grow in Zambia, Flavour Fragr. J.,1998, 13, 29-30.
  • [34] Góra J., Lis A., Olejek lemongrasowy, Aromaterapia, 2002, 8, 5-10.
  • [35] Engel R., Guterman M., Hartisch C., Kołodziej H., Nahrstedt A., Hamamelis virginiana, Planta Med., 1998, 64, 251-258.
  • [36] Mosciano G., Organoleptic characteristics of flavor materials, Perf. Flav., 1998, 23(1), 33-36.
  • [37] Góra J., Lis A., Olejki lawendowe, Aromaterapia, 1995, 1,5-11.
  • [38] Góra J., Lis A., Olejek melisowy, Aromaterapia, 1998, 4, 5-9.
  • [39] Kulesza J., Góra J., Tyczkowski A., Chemia i Technologia Związków Zapachowych, WPLiS, Warszawa, 1961.
  • [40] Boland U.W., Muller D.G., On the odor of the mediterranean seaweed Dictyopteris membranacea: New Cn hydrocarbons from marine brown algae-III. Tetrahedron Lett., 1987, 28, 307-310.
  • [41] Djerassi C., Dictionary of Natural Products, Chapman & Hall, New York, 1994, H00410, N00590,H00409, U00061.
  • [42] Rosecke J., Pietsch M., Konig W.A., Volatile constituents of wood-rotting Basidiomycetes, Phytochemistry, 2000, 54, 747-750.
  • [43] Lawrence B.M., Reynolds R.J., Progress in essential oils. Lemongrass oil, Perf. Flav., 1998, 23(4), 39-44.
  • [44] Mahmood U., Kaul V.K., Acharya R., Volatile constituents of Capillipedium parviflorum, Phytochemistry, 2004, 65, 2163-2166.
  • [45] Opdyke D.L.J., Monographs on fragrance raw materials, Pergamon Press, Great Britan, 1979.
  • [46] BoiiTKeBHH C.A., 865 flyuiucmbix eeiąecme dm napcpioMepuu u óumoeou xumuu, MOCKBA, nnmeBaa npoMbiniJieHHocTb, 1994.
  • [47] Gibka J., Gliński M„ Góra J., Kijeński J., Synthesis and odour characteristics of some aliphatic C7-C13 ketones and their derivatives, Perf. Flav., 1999, 24(5), 19-22.
  • [48] Sabatier P., Mailhe A., Nouvelle methode de preparation catalytique des aldehydes a partir des acides, Compt. Rend., 1912, 154, 561-567.
  • [49] Gliński M., Kijeński J., Jakubowski A., Ketones from monocarboxylic acids. Catalytic ketonization over oxide system, Appl. Catal. A .Gen., 1995, 128, 209-217.
  • [50] Gliński M., Gibka J., Catalytic ketonisation over oxide catalysts. Part IX. Single step synthesis of aliphatic saturated and unsaturated Cn-Ci3 ketones from carboxylic acids, Polish J. Chem., 2004, 78, 299-302.
  • [51] Guadagni D.G., Buttery R.G., Odor threshold of 2,3,6-trichloroanisole in water, J. FoodSci., 1978, 43, 1346-1347.
  • [52] Buttery R.G., Teranisi R., Ling L.C., Turnbaugh J.G., Quantitative and sensory studies on tomato paste volatiles, J. Agric. Food Chem., 1990, 38, 336-340.
  • [53] Gibka J., Gliński M., Derivatives of tridecan-x-ones (x=2-7): Synthesis and spectral data, Zesz. Nauk. PŁ, Chem. Spożyw. Biotechnol., 2004, 68, 23-31.
  • [54] Gibka J., Gliński M., Derivatives of undecan-x-ones (x=2-6). Synthesis and spectral data, Zesz. Nauk. PŁ, Chem. Spożyw. Biotechnol., 2006, 70, 5-12.
  • [55] Gibka J., Gliński M., Góra J., Kijeński J., Synthesis and odour characteristics of some aliphatic C7-Q3 ketones and alcohols and their derivatives, Zesz. Nauk. PŁ, Chem. Spożyw. Biotechnol., 1998, 60, 65-70.
  • [56] Gibka J., Gliński M., Góra J., Kijeński J., Synteza i charakterystyka zapachowa alifatycznych ketonów i alkoholi C7 -Cn oraz ich pochodnych, Pollena KPChG,1999, 4, 159-162.
  • [57] Gibka J., Góra J., Wójcicka A., Gliński M., Synteza i charakterystyka zapachowa izomerycznych, alifatycznych tridekanonów i ich pochodnych, Zesz. Nauk. PŁ, Chem. Spożyw. Biotechnol., 2002, 66, 85-90.
  • [58] Gibka J„ Gliński M„ Odour characteristics of aliphatic metameric C-13 ketones, alcohols and their derivatives, Perf. Flav., 2004, 29(2), 42-46.
  • [59] Gibka J., Gliński M., Olfactory properties of straight-chain undecan-x-ones, undecan-x-oles (x=2-6) and their derivatives, Flavour Fragr. J., 2008, 23, 147-151.
  • [60] Arctander S., Perfume and Flavor Chemical, Arctander, Montclair, New York, 1969.
  • [61] Distinctive Perfume and Flavor Ingredients. 1993-1994 Catalogue. Bedoukian Research Inc., Danbury, CT.
  • [62] Rossiter K.J., Structure-odor relationships, Chem. Rev., 1996, 96, 3201-3240.
  • [63] Norma PN ISO 5496/1997. Analiza sensoryczna. Metodologia. Wprowadzenie i szkolenie oceniających w wykrywaniu i rozpoznawaniu zapachów.
  • [64] Brud W.S., Konopacka-Brud I., Podstawy perfumerii, historia, pochodzenie i zastosowanie substancji zapachowych, Władysław S. Brud, Iwona Konopacka- Brud, Łódź, 2009.
  • [65] Fema index Flavor Ingredient Information FEMA INDEX.
  • [66] Góra J., Lis A., Olejek goździkowy. Olejek kanangowy, w: Najcenniejsze olejki eteryczne, UMK, Toruń, 2005.
  • [67] Góra J., Lis A., Olejek limetkowy, mandarynkowy, grejpfrutowy, Aromaterapia, 1997,3,5-10.
  • [68] Góra J., Lis A., Olejki cytrusowe, Aromaterapia, 1997, 3, 5-8.
  • [69] Werner J., Bogert M.T., The synthesis from Thujaketone of some new hydroterpenoids, J. Org. Chem., 1939, 3, 578-587.
  • [70] Grabowska J., Substancje zapachowe w: Chemia Żywności, Ed. Sikorski Z.E., NT WNT, Warszawa, 2007.
  • [71] Boelens H., Haring H.G., Takken H.J., The influence of molecular structure on olfactive quality (a quantitative approach), Chem. Ind., 1983, 3, 26-30.
  • [72] Billot M., Wells F. V., Perfumery Technology, Ellis Horwood Limited, New York, 1975.
  • [73] Clark G.S., Aldehyde C-l 1, Perf. Flav., 1997, 22(9-10), 43-54.
  • [74] Gildemeister E., Hoffmann Fr., Die Atherischen Ole, Academy-Publication, Berlin, 1966.
  • [75] Lis A., Olejek kolendrowy, Aromaterapia, 2004, 2, 5-11.
  • [76] Lawrence B.M., Reynolds R.J., Progress in Essential Oils. Coriander oil. Mandarin oil, Perf. Flav., 1991, 16,49-58.
  • [77] Verzera A., Lamonica G., Moudello L., Trozzi A., Dugo G., The composition of bergamot oil, Perf. Flav., 1996, 12(5), 31-37.
  • [78] Kalemba D., Thiem B., Constituents of the essential oils of four micropropagated Solidago species, Flavour Fragr. J., 2004, 19, 40-43.
  • [79] Javidnia K., Miri R., Kamalinejad M., Sarkarzadeh H., Jamalian A., Chemical composition of the essential oils of Anthemis altissima L. grow in Iran, Flavour Fragr. J., 2004, 19, 213-216.
  • [80] Maleńcić D., Couladis M., Mimica-Dukić N., Popoić M., Boża P., Essential oils of three Salvia species from the pannonian part of Serbia, Flavour Fragr. J., 2004, 19,225-228.
  • [81] Boelens M.H., Van Gemert L.J., Organoleptic properties of aliphatic aldehydes, Perf. Flav., 1987, 12(5), 31-37.
  • [82] Koyasako A., Bernhard R.A., Volatile constituents of the essential oil of kumquat, J. Food Set, 1983, 48, 1807-1812.
  • [83] Anonis D.P., Flower oils and floral compounds in perfumery, Allured Publishing Corp, Illinois, 1993.
  • [84] SYMRISE GMBH &CO.KG, Aldehydes substituted in alfa position by alkyl residues as odoriferous and aroma substances, Patent US 2008/0015392 Al.
  • [85] Gibka J., Gliński M., Synthesis and olfactory properties of 2-alkylalkanals, analogues of 2-methylundecanal, Flavour Fragr. J., 2006, 21, 480-483.
  • [86] Aroma Chemicals Data Catalog, Symrise, 2006.
  • [87] Mandeville S., Yaylayan V., Simpson B., GC/MS Analysis of flavor-active compounds in cooked commercial shrimp waste, J. Agric. Food Chem., 1992, 40, 1275-1279.
  • [88] Miyazawa M., Utsumi Y., Kawata J., Aroma-active compounds of Elatostema laetevires and Elatostema mbellatum var. majits, J. Oleo Set, 2009,58,163-169.
  • [89] Katalog Givaudan-ingredient list, 2010.
  • [90] Flick E.W., Cosmetics additives: An industrial guide, E.W. Flick, New Jersey, 1991.
  • [91] Leffingwell J. C., Chirality & bioactivity, Leffingwell Reports, 2003, 3, 1-27.
  • [92] Stańczak A., Baranczewski P., Lewgowd W., Leki chiralne, Farm. Pol., 2005, 61,418-426.
  • [93] Patrick G.L., Chemia Medyczna, NT WNT, Warszawa, 2003.
  • [94] Pluta J., Haznar D., Chołon M., Stereoizomeria leków, cz. I. Znaczenie w farmakologii. Farm. Pol, 2002, 58, 987-992.
  • [95] Pluta J., Haznar D., Choton M., Stereoizomeria leków, cz. II. Aspekty farmaceutyczne, Farm. Pol., 2003, 59, 339-342.
  • [96] Leffingwell J.C., Chirality & odour perception. http://www.leffingwell.com/chirality/chirality.htm
  • [97] Boelens M.H., Boelens H., Gemert L.J., Sensory properties of opitical isomers, Perf. Flav., 1993, 18(6), 2-14.
  • [98] Assaf S., Hadar Y., Dosoretz C.G., 1 -octen-3-ol and 13-hydropeoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotuspulmonarius, Enzyme Microb. Technol., 1997, 21, 484-490.
  • [99] Brenna E., Fuganti C., Serra S., Enantioselective perception of chiral odorants, Tetrahedron: Asymmetry, 2003,14, 1-42.
  • [100] Zawirska-Wojtasiak R., Optical purity of (/?)-(-)-l-octen-3-ol in the aroma of various species of edible mushrooms, Food Chem., 2004, 86, 113-118.
  • [101] Abate A., Brenna E., Fregosi G., Bio-catalysed synthesis of active Undecavertol® enantiomers, Tetrahedron: Asymmetry, 2005, 16, 1997-1999.
  • [102] Kraft F., Frater G., Enantioselectivity of the musk odor sensation, Chirality, 2001, 13,388-394.
  • [103] Frater G., Muller U., Kraft P., Preparation and olfactory characterization of the enantiomerically pure isomers of the perfumery synthetic galaxolide, Helv. Chim. Acta, 1999, 82, 1656-1665.
  • [104] Sell C.S., Structure - odor relationships. On the unpredictability of odor, Angew. Chem. Int. Ed., 2006, 45, 6254-6261.
  • [105] Modnicki D„ Klimek B., Izomeria a aktywność biologiczna i farmakologiczna związków pochodzenia naturalnego, Farm. Pol., 2001, 57, 620-627.
  • [106] Achmatowicz O., Grynkiewicz G., Metody pozyskiwania związków enancjomerycznie czystych, Acta Pol. Pharm.-Drug Res., 1993, 50, 13-74.
  • [107] Mugford P.F., Wagner U.G., Jiang Y., Faber K., Kazlauskas R.J., Enantiocomplementary Enzymes: Classification, Molecular Basis for Their Enantiopreference, and Prospects for Mirror-Image Biotransformations, Angew. Chem. Int. Ed., 2008, 47, 8782-8793.
  • [108] Breuer M., Ditrich K., Habicher T., Hauer B., KeBeler M., Sturmer R., Zelinski T., Industrial methods for the production of optically acive intermediates, Angew. Chem. Int. Ed., 2004, 43, 788-824.
  • [109] Hage A., Schoemaker H.E., Field J.A., Optimization of stereoselective ketone reduction by the white-rot fungus Merulius tremellosus ono 991, Appl. Microbiol, Biotechnol, 2001, 57, 79-84.
  • [110] Bruni R., Fantin G., Medici A., Pedrini P., Sacchetti G., Plants in organic synthesis: an alternative to baker's yeast, Tetrahedron Lett., 2002, 43, 3377-3379.
  • [111] Seebach D., Sutter M.A., Weber R.H., Ziiger M.F., Yeast reduction of ethyl acetoacetate: (S)-(+)-ethyl 3-hydroxybutanoate, Org. Syntheses, 1985, 63, 1-9.
  • [112] Kamińska J., Markowicz L., Stołowska J., Góra J., Baker's yeast mediated preparation of S(+)-6-methyl-5-hepten-2-ol, the pheromone of an Ambrosia Beetle, Acta Biotechnol., 1991, 11,63-65.
  • [113] Csuk R., Glanzer B.I., Bakers yeast mediated transformations in organic chemistry, C/iem. Rev., 1991, 91, 49-97.
  • [114] Faber K., Biotransformations in Organic Chemistry, Springer-Verlag, Berlin, Heidelberg, 2000.
  • [115] Manzocchi A., Casati R., Fiecchi A., Santaniello E., Studies on the stereochemical control of fermenting baker's yeast mediated reductions, J. Chem. Soc. Perkin Trans. I, 1987, 2753-2757.
  • [116] Nakamura K., Matsuda T., Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum, J. Org. Chem., 1998, 63, 8957-8964.
  • [117] Roberts S.M., Preparative biotransformations: the employment of enzymes and whole-cells in synthetic organic chemistry, J. Chem. Soc. Perkin Trans 1, 1998, 157-169.
  • [118] Faber K., Riva S., Enzyme catalyzed irreversible acyl transfer, Synthesis, 1992, 895-910.
  • [119] Schoffers E., Gołębiowski A., Johnson C.R., Enantioselective synthesis through enzymatic asymmetrization, Tetrahedron, 1996, 52, 3769-3826.
  • [120] Carrea G., Riva S., Properties and synthetic applications of enzymes in organic solvents, Angew. Chem. Int. Ed., 2000, 39, 2226-2254.
  • [121] Ghanem A., Aboul-Enein H.Y., Lipase-mediated chiral resolution of racemates in organic solvents, Tetrahedron: Asymmetry, 2004, 15, 3331-3351.
  • [122] Kirchner G„ Scollar M.P., Klibanov A.M., Resolution of racemic mixtures via lipase catalysis in organic solvents, J. Am. Chem. Soc., 1985, 107, 7072-7076.
  • [123] Chalecki Z„ Plenkiewicz J., Zastosowanie lipaz w syntezie organicznej w środowisku bezwodnym, Wiad. Chem., 1998, 52, 545-567.
  • [124] Haliniarz E., Lejczak B., Zastosowanie lipaz w syntezie organicznej, Wiad. Chem., 1996, 50, 193-211.
  • [125] Ghanem A., Trends in lipase-catalyzed asymetrie access to enantiomerically pure/enriched compounds, Tetrahedron, 2007, 63, 1721-17-54.
  • [126] Hasan F., Alishah A., Hameed A., Industrial applications of microbial lipases, Enzyme Microb. Technol., 2006, 39, 235-251.
  • [127] Hirata H., Mayama M., Miyagishi M., Substrate-solvent dependence of enantiselectivity in porcine pancreatic lipase catalyzed transesteryfication between tributyrylglycerol and secondary alcohol in organic solvent, J. Oleo Sci., 2002,51,539-547.
  • [128] Ohtani T., Nakatsukasa H., Kamezawa M., Tachibana H., Naoshima Y.,Enantioselectivity of Candida antarctica lipase for some synthetic substrates including aliphatic secondary alcohols, J. Mol. Catal. B: Enzym., 1998, 4, 53-60.
  • [129] Kanamori Y., Watanabe M., Chen Y-G., Yanagishita H., Hirata H., Kinetic resolution of (i?)-and (5)-3-alkanols by lipase catalyzed transesteryfication with isopropenyl acetate in organic solvent, J. Oleo Sci., 2005, 54, 105-114.
  • [130] Raminelli C., Camasseto J.V., Andrade L.H., Porto A.L., Kinetic resolution of propargylic and allylic alcohols by Candida antarctica lipase (Novozyme 435), Tetrahedron: Asymmetry, 2004, 15,3117-3122.
  • [131] Matsuda T., Watanabe K., Harada T., Nakamura K., Arita Y., Misumi Y., Ichikawa S., Ikariya T., High-efficiency and minimum-waste continuous kinetic resolution of racemic alcohols by using lipase in supercritical carbon dioxide, Chem. Commun., 2004, 2286-2287.
  • [132] Ohno M., Kamo N., Kitamoto T., Yamazoto N., Hoshiba N., Mayama M., Hirata H., Kinetic studies on the optical resolution of 2-alkanol by Pseudomonas cepacia lipase catalyzed transesterification with vinyl acetate in organic solvent, J. Oleo Sci., 2002, 51, 643-653.
  • [133] Hirata H., Ikushima M., Watanabe M., Kawauchi K., Miyagishi M., Chen Y-G., Yanagishita H., Kinetic resolution of optical pure 3-alkanol by Pseudomonas cepacia lipase - catalyzed transesteryfication with vinyl acetate in organic solvent, J. Oleo Sci., 2003, 52, 375-386.
  • [134] Kanamori Y., Watanabe M., Kawauchi K., Chen Y-G., Yanagishita H., Hirata H., Kinetic resolution of enantiomers in racemic and enantiomerically enriched 2-alkanols by Pseudomonas cepacia lipase catalyzed transesteryfication with isopropenyl acetate in organic solvent, J. Oleo Sci., 2005, 54, 21-31.
  • [135] Hirata H., Ohno M., Kawauchi K., Mayama M., Chen Y-G., Yanagishita H., Kamo N., Kinetic resolution of enantiomers in enantiomerically enriched 2-alkanol by Pseudomonas cepacia lipase catalyzed transesteryfication with vinyl acetate in organic solvent, J. Oleo Sci., 2003, 52, 99-108.
  • [136] Weidmann R., Horeau A., Application du dedoublement partiel en phase homogene. Determination de la configuration absolute des constituants dextrogyre ou levogyre d'un alcool racemique (ou d'une amine racemique), Bui. Soc. Chim. Fr., 1967, 1, 117-124.
  • [137] Dangel B.D., Polt R., Catalysis by amino acid-derived tetracoordinate complexes: Enantioselective addition of dialkylizincs to aliphatic and aromatic aldehydes, Org. Lett., 2000, 2, 3003- 3006.
  • [138] Yamada K., Tan H., Tatematsu H., Ojika M., Dictyoprolene and neodictyoprolene, two new odoriferous compounds from the brow alge Dictyopteris prolifera: structures and synthesis, Tetrahedron, 1986, 42, 3775-3780.
  • [139] Yamada K., Tan H., Tatematsu H., Isolation and structure of dictyoprolene, a possibile precursor of various undecanes in brow algae from Dictyopteris prolifera, J. Chem Soc. Chem. Comm., 1979, 13, 572-573.
  • [140] Hillbur Y., Celander M., Baur R., Rauscher S., Haftmann J., Franke S., Francke W., Identification of the sex pheromone of the swede midge, Contarinia nasturtii,J. Chem. Ecol., 2005, 31, 1807-1828.
  • [141] Cygler M., Grochulski P., Kazlauskas R. J., Schrag J. D., Bouthiller F., Rubin B., Serreqi A.N., Gupta A.K., A structural basis for the chiral preferences of lipases, J. Am. Chem. Soc., 1994, 116, 3180-3186.
  • [142] Skopińska-Różewska E., Niemirowska-Mikulska H., Zwolska Z., Różycka B., Jezierska-Anczukow A., Augustynowicz-Kopeć E., Konopacka-Brud I.,Immunotropowe właściwości olejków, Terapia, 2001, 9, 47-49.
  • [143] Skopińska-Różewska E., Sokolnicka I., Kleniewska D., Zwolska Z., Sommer E., Rogala E., Filewska M., Podsadło B., Augustynowicz-Kopeć E., Konopacka-Brud I., Brud W., Działanie immunotropowe i przeciw- drobnoustrojowe olejków eterycznych, w: Wpływ ksenobiotyków na układ odpornościowy. Ed. A.K. Siwicki., IRS, Olsztyn, 1997, 127-136.
  • [144] Kaefer Ch.M., Milner J.A., The role of herbs and spices in cancer prevention, J. Nutr. Biochem., 2008, 19, 347-361.
  • [145] Chrząszcz M., Biologiczna aktywność wybranych składników olejków eterycznych cz. I, Aromaterapia, 1998, 4, 20-23.
  • [146] Chrząszcz M., Biologiczna aktywność wybranych składników olejków eterycznych cz. II, Aromaterapia, 1998, 4, 20-23.
  • [147] Góra J., Gibka J., Olejki sandałowe, w: Najcenniejsze olejki eteryczne. Ed. J. Góra, A. Lis, UMK, Toruń, 2005, 23, 254-260.
  • [148] Ochi T., Shibata H., Higuti T., Kodama K. H., Kusumi T., Takaishi Y., Anti-Helicobacter pylori compounds from Santalum album, J. Nat. Prod., 2005, 68, 819-824.
  • [149] Gao L.P., Wei H.L., Zhao H.S., Xiao S.Y., Zheng R.L., Antiapoptopic and antioxidant effects of rosmarinic acid in astrocytes, Pharmazie, 2005, 60, 62-65.
  • [150] Singh M., Krishanappa R., Bagewadi A., Keluskar V., Efficacy of oral lycopene in the treatment of oral leukoplakia, Oral Oncol., 2004, 40, 591-596.
  • [151] Forney F.W., Markovetz A.J., The biology of methyl ketones, J. Lipid Res., 1971, 12,383-395.
  • [152] Laska M., Miethe W., Rieck C., Weindl K., Olfactory sensitivity for aliphatic ketones in squirrel, monkeys and pigtail macaques, Exp. Brain Res., 2005,160, 301-311.
  • [153] Grosch W., Aromastoffe aus der Lipidperoxidation, Fat. Sci. Technol., 1989, 91,1-6.
  • [154] Jeleń H.H., Krawczyk J., Larsen T.O., Jarosz A., Gołębniak B., Main compounds responsible for off-odour of strawberries infected by Phytophthora cactorum, Lett. Appl. Microbiol., 2005, 50, 255-259.
  • [155] Ramirez M.R., Estevez M., Morcuende D., Cava R., Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS, J. Agric. Food Chem., 2004, 52, 7637-7643.
  • [156] Hayashi K., Kamiya M., Hayashi T., Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza Virus, and HIV, Planta Med., 1995,61, 237-241.
  • [157] Samogyi L.P., Food additives-, Chen F. Chung H.Y., Wang X., Natural Flavors, w: Handbook of food science technology and engineering. Ed. Hui Y. H., Taylor&Francis Group, Boca Raton, FL, 2006, 2, 83-88.
  • [158] De Feo V., De Simone F., Senatore F., Potential allelochemicals from the essential oil of Ruta graveolens, Phytochemistry, 2002, 61, 573-578.
  • [159] Skopińska-Różewska E., Gibka J., Gliński M., Siwicki A.K., Sommer E., Bany J., Immunotropic effects of undecan-2-one in mice, Centr. Eur. J. Immunol., 2006, 31, 57-62.
  • [160] Gibka J., Skopińska-Różewska E., Siwicki A.K., Wasiutyński A., Sommer E., Bany J., Stimulation of humoral immunity in mice by undecan-2-one, undecan- 2-01 and their derivatives, Centr. Eur. J. Immunol., 2008, 33, 47-49.
  • [161] Gibka J., Skopińska-Różewska E., Siwicki A.K., Wasiutyński A., Sommer E., Bany J., Działanie immunotropowe i wpływ na wzrost doświadczalnego mięsaka u myszy undekan-x-onów, undekan-x-oli i ich pochodnych (x=2-4), w: Endogenne i egzogenne modulatory odporności i angiogenezy. Ed. E. Skopińska-Różewska, A.K. Siwicki. Edycja, Olsztyn, 2007, 61-77.
  • [162] Gibka J., Majda T., Tichek A., Siwicki A.K., Radomska-Leśniewska D.M., Gliński M., Sommer E., Skopińska-Różewska E., Study of the effect of undecan-3-one and undecan-3-ol on cellular and humoral immunity in mice, J. Essent. Oil Res., 2008, 20, 282-286.
  • [163] Gibka J., Skopińska-Różewska E., Siwicki A.K., Wasiutyński A., Sommer E., Bany J., Skurzak H., Mazurkiewicz M., The effect of 4-undecanone and its derivatives on cellural and humoral immunity and tumor growth in mice, Centr. Eur. J. Immunol., 2009, 34, 29-34.
  • [164] Gibka J., Wasiutyński A., Skopińska-Różewska E., Siwicki A. K., Chorostowska-Wynimko J., Sommer E., Mazurkiewicz M., Gliński M., The effect of undecanones and their derivatives on tumor angiogenesis and VEGF content, Polish J. Vet. Sci., 2010, 13, 105-115.
  • [165] Gibka J., Skopińska-Różewska E., Siwicki A. K., Gliński M., Nowe zastosowanie undekan-2-olu, zgłoszenie patentowe P-383759, 2007.
  • [166] Skopińska-Różewska E., Skurzak H., Wasiutyński A., Jung L., Siwicki A. K., Bałan B.J., Sommer E., Mazurkiewicz M., Skorupski M., Prątnicki A., Sokolnicka I., Skopiński P., Sarcoma L-l in mice as a model for the study of experimental angiogenesis, Centr. Eur. J. Immunol., 2007, 32, 77-83.
  • [167] Wasiutyński A., Skopińska-Różewska E., Jung L., Sommer E., Bany J., Siwicki A.K., Chorostowska-Wynimko J., Prątnicki A., Morton M., Skurzak H., Comparison of the effects of enoxaparin and nadroparin on tumor angiogenesis in mice, Centr. Eur. J. Immunol., 2006, 31, 70-74.
  • [168] Bakkali F., Averbeck S., Averbeck D., Idaomar M., Biological effects of essential oils - a review, Food Chem. Toxicol.,2008, 46, 446-475.
  • [169] Adams S., Kunz B., Weidenb rner M., Mycelial deformations of Cladosporium herbarum due to the application of eugenol or carvacrol, J. Essent. Oil Res., 1996, 8,535-545.
  • [170] Miiller-Riebau F., Berger B., Yegen O., Chemical composition and fungitoxic properties to phytopathogenic fungi of essentials oils of selected aromatic plants growing wild in Turkey, J. Agric. Food Chem., 1995, 43, 2262-2266.
  • [171] Sivropoulou A., Nikolaou C., Papanikolaou E., Kokkini S., Lanaras T., Arsenakis M., Antimicrobial, cytotoxic and antiviral activities of Salvia fructicosa essential oil, J. Agric. Food Chem., 1997, 45, 3197-3201.
  • [172] Lis-Balchin M., Deans S.G., Hart S., Bioactivity of geranium oils from different commercial sources, J. Essent. Oil Res., 1996, 8, 281-290.
  • [173] Egyud L.G., Studies on cell division: the effect of aldehydes, ketones and a-keto- aldehydes on the proliferation of Escherichia coli, Curr. Modem Biol., 1967, 1, 14-20.
  • [174] Mc Dowell P.G., Lwande W., Deans S.G., Waterman P.G., Volatile resin exudates from steam bark of Commiphora Rostrata: potential role in plant defence, Phytochemistry, 1988, 27, 2519-2521.
  • [175] Whang H.S., Tonelli A., Release characteristics of the non toxic insect repellant2- Indecanone from its crystalline inclusion compound with a cyclodextrin, J. Inclus. Phenom. Macroc. Chem., 2008, 62, 127-134.
  • [176] Dyrektywa Komisji Parlamentu Europejskiego i Rady 2008/127/WE
  • [177] Ivanova A., Mikhova B., Najdenski H., Tsvetkova I., Kostowa I., Antimicrobial and cytotoxic activity of Ruta graveolens, Fitoterapia, 2005, 76, 344-347.
  • [178] Wolters B., Eilert U., Antimicrobial substances in callus cultures of Ruta graveolens, Planta Med., 1981,43, 166-174.
  • [179] Kunicka A., Gibka J., Gliński M., Antimicrobial activity of undecan-x-ones (x=2-4), Polish J. Microb., 2010, 59, 301-306.
  • [180] Ali-Shtayeh M.S., Suheil I., Ghdeib A., Antifungal activity of plant extracts against dermatophytes, Mycoses, 1999, 42, 665-672.
  • [181] Ojala T., Remes S., Haansuu P., Vourela H., Hiltunen R., Haahtela K., Vuorela P., Antimicrobial activity of some coumarin containing herbal plants growing in Finland., J. Ethnopharmacology, 2000,73, 299-305.
  • [182] Valsaraj R., Pushpangadan P., Smitt U.W., Adsersen A., Nyman U. Antimicrobial screening of selected medicinal plants from India, J. Ethnopharmacology, 1997, 58, 75-83.
  • [183] Alzoreky N.S., Nakahara K., Antibacterial activity of extracts from some edible plants commonly consumed in Asia, Int. J. Food Microbiol. 2003, 80, 223-230.
  • [184] Ali-Shtayeh M.S., Yaghmour R.M., Faidi Y.R., Salem K., Al-Nuri M.A., Antimicrobial activity of 20 plants used in folkloric medicine in the alestinian area, J. Ethnopharmacol., 1998, 60, 265-271.
  • [185] Al-Bakri A.G., Afifi F.U., Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration, J. Microbiol. Methods, 2007, 68, 19-25.
  • [186] Tabti B., Marghache S., Hamaza M., Bendahou M., Chemical composition and antimicrobial activity of Ruta chalepensis L., essential oil from Algeria, Asian, J. Chem., 2008,1; http://publications.univ-tlemcen.dz/spip.php7articlel44
  • [187] Gibka J., Kunicka-Styczyńska A., Gliński M., Nowe zastosowanie undekan-2- onu, Patent PL 208604, 2011.
  • [188] Gibka J., Kunicka-Styczyńska A., Gliński M., Antimicrobial activity of undeca-2-one, undecan-2-ol and their derivatives, J. Essent. Oil-bearing Plants, 2009, 12, 605-614.
  • [189] Gibka J., Kunicka-Styczyńska A., Gliński M., Antimicrobial activity of undecan-3-one, undecan-3-ol and undec-3-yl acetate, Centr. Eur. J. Immunol., 2009, 34, 154-157.
  • [190] Gibka J., Kunicka Styczyńska A., Gliński M., Nowe zastosowanie undekan-2- olu, zgłoszenie patentowe P-383760, 2007.
  • [191] Kalemba D., Kunicka A., Antibacterial and antifungal properties of essential oils, Curr. Med. Chem., 2003, 10, 813-829.
  • [192] Peana A.T., D’Aquila P.S., Panin F., Serra G., Pippia P., Moretti M.D.L., Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils, Phytomedicine, 2002, 9, 721-726.
  • [193] Inouye S., Yamaguchi H., Takizawa T., Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method, J. Infect. Chemoth., 2001, 7, 251-254.
  • [194] Inouye S., Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts, Int. J. Aromatherapy, 2003, 13, 33-41.
  • [195] [Tabanca N., Demirci F., Demirci B., Wedge D.E., Hiisnii Can Baser K.,Composition, enantiomeric distribution, and antimicrobial activity of Tanaceum argenteum subsp. flabellifolium essential oil, J. Pharm. Biol. Analysis, 2007, 45, 714-719.
  • [196] Lis-Balchin M., Ochocka R.J., Deans S.G., Asztemborska M., Hart S.,Differences in bioactivity between the enantiomers of a-pinene, J. Essent. Oil Res., 1999, 11,393-397.
  • [197] Ochocka R.J., Lis-Balchin M., Deans S.G., Asztemborska M., Differeces in bioactivity between the enantiomers of a-pinene and limonene, Eur. J. Pharm. Sci., 1996, 4, S105.
  • [198] Aggarwal K.K., Khanuja S.P.S., Ateeque A., Kumar T.R.S., Gupta V.K., Kumar S., Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa, Flavour Fragr. J., 2002, 17, 59-63.
  • [199] Demetzos C., Stahl B., Anastassaki T., Gazouli M., Tzouvelekis L.S., Rallis M., Chemical analysis and antimicrobial activity of the Resin ladano, of its essential oil and of the isolated compounds, Planta Med., 1999, 65, 76-78.
  • [200] Griffin S.G., Wyllie S.G., Markham J.L., Leach D.N., The role of structure and molecular properties of terpenoids in determining their antimicrobial activity, Flavour Fragr. J., 1999, 14, 322-332.
  • [201] Christoph F., Kaulfers P.M., Stahl-Biskup E., In vitro evaluation of the antibacterial activity of P-triketones admixed to Melaleuca oils, Planta Med., 2001, 67, 768-771.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0029-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.