PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power supply unit for ATCA-based piezo compensation system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of hundred of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power |1-3|. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsches Elektro wen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator / sensor configuration. Therefore, it is necessary to design a distributed control system which could be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecommunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The already performed tests of ATCA LLRF control system proofed the possibilities of usage of such a standard for high energy physics experiments |4|. The paper presents the concept of integration of the piezo compensation system to the ATCA standards with special emphasis to the hardware part of the system. Moreover, the first results from carried out tests of the prototype power supply unit for piezo drivers integrated to ATCA board will be presented.
Twórcy
autor
autor
autor
autor
autor
  • Technical University of Łódź, Department of Microelectronics and Computer Science, Wólczańska 221/223, 90-924, Łódź,Poland, kprzygod@dmcs.pl
Bibliografia
  • [1] S. N. Simrock, "Lorentz Force Compensation Of Pulsed SRF Cavities," Proceedings of LINAC 2002.
  • [2] G. Devanz, P. Bosland, M. Desmons, E. Jacques, M. Luong, B. Visentin, "Compensation of Lorentz Force Detuning of a TTF 9-Cell Cavity with a New Integrated Piezo Tuner," Proceedings of EPAC, Edinburgh Scotland, 2006, pp. 378-380.
  • [3] P. Sękalski, A. Napieralski, S. Simrock, "Automatic Resonant Excitation Based System for Lorentz Force Compensation for FLASH," Proceedings of EPAC, Edinburgh, Scotland, 2006, pp. 3206-3208.
  • [4] D. Makowski, W. Koprek, T. Jezynski, A. Piotrowski, G. Jablonski, W. Jalmuzna, and S. Simrock, "Interfaces and communication protocols in ATCA-based LLRF control systems," in Proc. Nuclear Science Symp. Med. Imag. Conf. 16th Room Temperature Semiconductor Detector Workshop, 2008.
  • [5] T. Matsumoto, S. Fukuda, H. Katagiri, S. Michizono, Y. Yano, Z. Geng "Development of Digital Low-Level RF Control System Using Multi-Intermediate Frequencies," Proceedings of PAC, Albuquerque, New Mexico, USA, 2007, pp. 2110-2112.
  • [6] A. Neumann, J Knobloch, "RF Control of the Superconducting Linac for the Bessy FEL," Proceedings of EPAC, Lucerne, Switzerland, 2004, pp. 973-975.
  • [7] R. Cargano and others, "First Fermilab Results Of SRF Cavity Lorentz Force Detuning Compensation Using A Piezo Tuner," 13th International Workshop on RF Superconductivity Peking University, Beijing, China 2007.
  • [8] S. Michizono, S. Fukuda, H. Katagiri, T. Matsumoto, T. Miura, Y. Yano, Z. Geng, "Status of The Low-Level RF System at KEK-STF," Proceedings of PAC, Albuquerque, New Mexico, USA, 2007. 2113-2115.
  • [9] K. Przygoda, T. Poźniak, A. Napieralski, M. Grecki, "Piezo Control for Lorentz Force Detuned SC Cavities of DESY FLASH," Proceedings of International Panicle Accelerator Conference (IPAC'10), Kyoto, Japan, 24-28 of May 2010, pp. 1452-1454.
  • [10] M. Grecki, A. Andryszczak, T. Poźniak, K. Przygoda, S. Sękalski, ,,Compensation of Lorentz Force Detuning For SC Linacs (With Piezo Tuners)," Proceedings of EPAC 2008, pp. 862-864.
  • [11] T. Schilcher, "Vector Sum Control Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities," PhD thesis, Universitat Hamburg, Fachbereichs Physik, Germany, 1998
  • [12] K. Przygoda, W. Jałmużna, A Andryszczak, T. Poźniak, A. Napieralski, "FPGA Implementation of Multichannel Detuning Computation for SCLinacs," Proceedings of EPAC 2008
  • [13] W. Giergusiewicz, W. Jalmuzna, K. Pozniak, N. Ignashin, M. Greeki, D Makowski, T. Jezynki, K. Perkuszewski, K. Czuba, S. Simrock, and R. Romaniuk, "Low latency control board for LLRF system - Simeon 3.1, Photonics Applications in Industry and Research IV, August 2005
  • [14] http:www.radisys.com, application notes of Radisys ATCA products.
  • [15] R. S. Larsen, "Advances in Developing Next-Generation Electronics Standards for Physics", SLAC-PUB-13684, June 2009
  • [16] K. Przygoda, T. Pozniak, A. Napieralski, M. Greeki, "System For Monitoring and Compensation of Superconducting Resonant Cavities Detuning with Piezoelectric Elements," Conference of Podstawowe Problemy Energoelektroniki, Elektromechatroniki i Mechatroniki, Wisla 2009.
  • [17] A. Zawada, D Makowski, T. Jezynski, S Simrock, A. Napieralski, "Prototype AdvancedTCA Carrier Board with Three AMC Bays," Proc Nuclear Science Symp. Med. Imag. Conf. 16th Room Temperature Semiconductor Detector Workshop, 2008.
  • [18] S. Velusamy, "LightWeight IP (IwIP) Application Examples," Application note: Embedded Processing, XAPP1026, June 15, 2009.
  • [19] https//:www.vicor.com, application notes of V•I Chips.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0024-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.