
PCIExpress Hot-Plug Mechanism in Linux-based
ATCA Control Systems

Adam Piotrowski, and Dariusz Makowski

Abstract—PCI Express architecture is a widely used commu-
nication bus designed for industrial application. Additionally,
according to PICMG 3.4 specification it is a part of ATCA
architecture. One of the features offered by PCI Express standard
is possibility of replacing the system components without shutting
down entire system. In this paper, authors present general
overview of Hot-Plug implementation in Linux operating system
used in ATCA carrier board.

Index Terms—PCIExpress, Hot-Plug, ATCA, Advanced
Telecommunications Computing Architecture, AdvancedTCA,
Linux

I. INTRODUCTION

H IGH availability and reliability are the critical param-

eters for many systems. Non-stop operation and main-

tainer downtimes of just a few minutes a year are additional

coefficients required by many customers. An example of

such system is ATCA-based (Advanced Telecommunications

Computing Architecture) Low Level Radio Frequency (LLRF)

controller, designed for the X-ray Free Electron Laser project

(XFEL) - new linear accelerator that will be located in

Deutsches Elektronen-Synchrotron (DESY) research center in

Hamburg, Germany [1], [2]. To satisfy such high requirements

there must be provided a method to repair failures quickly

and without machine shutdown. In systems based on PCI

Express (Peripheral Component Interconnect Express) bus,

Hot-Plug/Hot-Swap [3] solutions are features that support

these goals. PCI Express has been designed as a high-speed,

serial computer expansion card standard [4]. Hot-Plug/Hot-

Swap solution provide methods to replace modules without

turning system off, keeping operating system services running

correctly after component removal and restarting or shutting

down software associated to removed device.

II. HARDWARE AND SOFTWARE SUPPORT FOR PCI

EXPRESS HOT-PLUG MECHANISM

Several hardware and software components presented in

Fig. 1 must be implemented to support the Hot-Plug func-

tionality. From software point of view, following elements are

required [5]:

• Hot-Plug Service responsible for processing commands

from operating system and sending it to standardized Hot-

Plug Driver,

• Hot-Plug Driver that interact with hardware Hot-Plug

Controller to accomplished requests,

• Device Drivers that support several Hot-Plug specific

commands.

The application programming interface for hardware Hot-Plug

Controller for the root complex and switch is standardized,

Operating
System

Device
Driver 1

Device
Driver 2

Device
Driver 3

Device
Driver 4

Hot-Plug
Service

Hot-Plug
Driver

Switch

Port

1 3 4

User Interface

Hot-Plug
Controller 1

Hot-Plug
Controller 2

Port
Interface

Port
InterfacePort

Root
Complex

C
tr

l

S
ta

tu
s

In
d

. C
tr

C
tr

l

S
ta

tu
s

In
d

. C
tr

Hot-Plug
Controller 3

Hot-Plug
Controller 3

Port
Interface

Port
Interface

C
tr

l

S
ta

tu
s

In
d

. C
tr

C
tr

l

S
ta

tu
s

In
d

. C
tr

Fig. 1. Hardware and software components required to support Hot-Plug
mechanism [5].

therefore any Hot-Plug Driver is able to control behavior of

mechanism. Programming interface to PCI Express controller

PCI Express
Capabilities Register

Next Cap
Pointer

PCI Express
Cap ID

Device Capabilities Register

Device Status Device Control

Link Capabilities

Link Status Link Control

Slot Capabilities

Slot Status Slot Control

Root Status

RsvdP Root Control

DW 0

DW 1

DW 2

DW 3

DW 4

DW 5

DW 6

DW 7

DW 8

Fig. 2. PCI Express Capability Register Set [5].

mainly utilizes Slot Registers located on the offset 5 and 6 in

PCI Express Capability register block presented in Fig 2. Slot

Capabilities register contains information about functionality

offered by the Hot-Plug controller, e.g. support for Hot-

Plug operations and surprise device removal without system

notification, presence of attention button, attention indicator

or power indicator. Slot Control register allows to control the

Hot-Plug operations and enables various controller features.

For example, it controls behavior of LEDs (Light Emitting

Diodes) indicators available in system and allows to enable

Hot-Plug interrupts e.g. to indicates Power Fault Detection or

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ���

�������	
 � �
�
 �� �����
���
 �� ���������
������ � �����
�� �������� ���	����� ��� ����
� �� !�"#

Presence Detect Change. Slot Status register allows to monitor

variety of events related to Hot-Plug system. Software can

monitor register to determine which event has occurred. Ad-

ditionally, if interrupt system related to controller is enabled,

appropriate interrupt will notify system about Hot-Plug event.

Slot Status register contains six bits responsible for indication

about detection of following conditions: attention button was

pressed, power fault at port was detected by Power Controller,

state of MRL sensor was changed, change in the state of slot

was detected, last Hot-Plug software command was completed.

The two last bits inform about precise state of MRL Sensor

(open or close) and Presence Detect (card is installed into slot

or not).

Major hardware elements required to support PCI Express

Hot-Plug functionality are as follow [5]:

• Hot-Plug Controller responsible for processing com-

mands issued by Hot-Plug Device Driver. Each root com-

plex and switch port that supports Hot-Plug functionality

has associated one controller, see Fig. 1,

• Card Slot Power Switching Logic allows to turn on/off

power supply to selected PCI Express slots. Logic is

controlled by Hot-Plug Controller and indirectly through

Hot-Plug Device Driver,

• Card Reset Logic allows to assert or deassert PCI Express

Reset (PERST#) signal to specified slot. It is controlled

by Hot-Plug Controller and indirectly through Hot-Plug

Device Driver,

• Power Indicator inform if power is applied to selected

slot. Controlled by Hot-Plug Controller and indirectly

through Hot-Plug Device Driver,

• Attention Indicator inform if Hot-Plug problem or failure

occurred. Controlled by Hot-Plug Controller and indi-

rectly through Hot-Plug Device Driver,

• Attention Button used by user to notified Hot-Plug soft-

ware about Hot-Plug request,

• Card Preset Detection Pins are located at two opposite

ends of PCI Express card slot. Those pins are shorter

then rest of the connectors, therefore allows to break-first

capability upon card removal.

III. PCI EXPRESS BUS DRIVER

Standard Linux PCI Driver Model allows to install only one

driver for one device. The PCI Express may offer multiple ser-

vices operating independently, like support for Virtual Chan-

nels (VC), Advanced Error Reporting (AER), Power Manage-

ment (PME) or Hot-Plug (HP) functionality. The PCI Express

Virtual Channel Service Driver allows fully independent flow

control between different virtual channels. Advance Error

Reporting permits for more robust error reporting than offered

by standard baseline mechanism implemented in PCI system.

PCI Express Hot-Plug Native Service Driver is responsible

for communication between Hot-Plug Controller and operating

system. Utilized programming interface is standardized, as

presented in Fig. 2, therefore it is not required to modify

driver in the case of different hardware architecture. To support

several service drivers per device, new architecture of PCI

Express Driver Model was implemented. During PCI device

enumeration the PCI Express Bus Port Driver is assigned to

each PCI Express Port. The Bus Driver analyze set of function-

alities supported by port, creates corresponding service devices

and register it into system device hierarchy. The Linux kernel

represents PCI Express service devices as pseudo-files in sysfs
file system located in directory /sys/bus/pci express/devices/.
The name of each device, e.g. 0000:00:1c.0:pcie01, contains

geographical location of the slot, constant string pcie, identifier

of slot type and identifier of service type. Available identifiers

and its meaning are presented in Table I and II. Values in

brackets are used by older version of Linux kernel. At the

end of PCI Express device enumeration process appropriate

service device drivers are loaded.

TABLE I
AVAILABLE PCI EXPRESS PORT TYPE IDS.

port type description

0 Root Port
1 Upstream Port
2 Downstream Port

TABLE II
AVAILABLE PCI EXPRESS SERVICE TYPE IDS.

service type description

1 (0) Power Management Service
2 (1) Advanced Error Reporting Service
4 (2) Native Hot-Plug Service
8 (3) Virtual Channel Service

Example PCI Express-based system consisting of Root

Complex and PCI Express Switch is presented in Fig. 3. Each

PCI Express
Root Complex

Root
Port

Root
Port
Root
Port

Root
Port
Root
Port

PCI Express Switch

Up
Port

Down
Port

Down
Port

Down
Port

Port Bus Driver

PME VCHP

Port Bus Driver

PMEPME
VC

VC

Port Bus Driver

VCHPAERAER VCAER HP VCHP

Port Bus Driver

VCAER

Fig. 3. PCI Express Bus Driver Architecture [6].

PCI Express Port has associated Port Bus Driver with loaded

set of service drivers, described in details in Table III. The

overview of PCI system visible from bus tree point of view is

presented in Fig. 4. Devices 01.0, 1c.0, 1c.3 are PCI-to-PCI

Express bridges.

IV. FAKE HOT-PLUG DRIVER FUNCTIONALITY

Fake Hot-Plug driver allows emulate remove or attach

selected device in a powered up system using software control.

Driver does not utilize functionality offered by PCI Express

��� ���������� ���
�������� ���������� ��� �	�!
�������
 �� 	���� "���� ���� ������	 �#���
�

TABLE III
DESCRIPTION OF PORTS AVAILABLE IN EXAMPLE SYSTEM.

sysfs file name service description

0000:00:01.0:pcie01 PME on first Root Port
0000:00:01.0:pcie08 VC on first Root Port
0000:00:1c.0:pcie01 PME on second Root Port
0000:00:1c.0:pcie04 HP on second Root Port
0000:00:1c.0:pcie08 VC on second Root Port
0000:00:1c.3:pcie01 PME on third Root Port
0000:00:1c.3:pcie08 VC on third Root Port
0000:04:00.0:pcie12 AER on switch upstream port
0000:04:00.0:pcie18 VC on switch upstream port
0000:05:08.0:pcie22 AER on switch first downstream port
0000:05:08.0:pcie24 HP on switch first downstream port
0000:05:08.0:pcie28 VC on switch first downstream port
0000:05:09.0:pcie22 AER on switch second downstream port
0000:05:09.0:pcie24 HP on switch second downstream port
0000:05:09.0:pcie28 VC on switch second downstream port
0000:05:0a.0:pcie22 AER on switch third downstream port
0000:05:0a.0:pcie24 HP on switch third downstream port
0000:05:0a.0:pcie28 VC on switch third downstream port

-[0000:00]-+-00.0

+-01.0-[04-08]----00.0-[05-08]-- +-08.0-[08]--

| +-09.0-[07]--

| \-0a.0-[06]--

+-1b.0

+-1c.0-[03]----00.0

+-1c.3-[02]----00.0

+-1d.0

+-1d.1

+-1d.2

+-1d.3

+-1e.0-[01]----00.0

+-1f.0

+-1f.1

\-1f.3

Fig. 4. The overview of PCI system available in example system.

Hot-Plug system, therefore it is possible to use it on ports that

do not support Hot-Plug. Each PCI and PCI Express device is

represented by the separate directory in sysfs file system e.g.

/sys/bus/pci/slots/0000:03:00.0/. To remove device from the

system user has to send value 0 to file called power located

in directory related to utilized device, e.g.:

echo 0 > /sys/bus/pci/slots/0000:03:00.0/power

To force bus reenumerate, user has to send value 1 to file

called power located in directory representing address of the

parent or sibling device, e.g.:

echo 1 > /sys/bus/pci/slots/0000:00:1c.0/power

Internally each PCI and PCI Express device is represented

by structure located in linked list. During initialization driver

register notification handler that allows to correctly serve stan-

dard Hot-Plug events like device remove or device add, there-

fore list of available devices is always up-to-date. Presented

functionality of fake Hot-Plug driver is available starting from

kernel version 2.6.30.

V. HOT-PLUG FOR FPGA-BASED PCI EXPRESS

ENDPOINTS

Reprogramming of FPGA-based PCI Express end-point de-

vice does not emit standard Hot-Plug event and in consequence

cannot be correctly recognized by Hot-Plug Controller. After

reprogramming internal structures of operating system storing

information about device configuration and capabilities are

invalid, in consequence every access to hardware component

will lead to kernel exception. To restore full functionality,

operating system must reenumerate part of the bus and once

again perform resource allocation. This operation can be

performed by fake Hot-Plug driver but must be initiated

manually be the user. It is important to note that correct

support for reprogrammable devices is available only in system

with implemented new version of Hot-Plug Native Service

Driver.

During the development of FPGA-based devices, it is very

important to correctly manage versions of currently tested

firmware. Wrong software downloaded to device can result in

unpredictable behavior of the system and lead to problem with

machine and operators safety. Based on functionality offered

by udev device manager it is possible to check correctness of

used firmware during Hot-Plug event processing. The udev is

a device manager utilized by Linux kernel 2.6. It is respon-

ACTION=="add", SUBSYSTEM=="pci", KERNEL=="0000:03:00.0",

ATTR{vendor}=="0x10EE", ATTR{device}=="0x0008",

RUN+="/bin/bash /etc/develop/check_firmware 0x10EE0008"

ACTION=="add", SUBSYSTEM=="pci", KERNEL=="0000:02:00.0",

ATTR{vendor}=="0x10EE", ATTR{device}=="0x009",

RUN+="/bin/bash /etc/develop/check_firmware 0x10EE0018"

Fig. 5. Configuration file that describe behavior of udev device manager
when device with device ID equal to 0x0008 or 0x0009 appears in specified
PCI Express slots in the system.

sible for dynamic allocation of device files in /dev directory,

implementation of persistent device naming convention and

firmware load. It works as a system daemon and process events

sent out by kernel through netlink interprocess communication

mechanism [7]. Behavior of udev manager is controlled by the

set of configuration files located in directories /etc/udev/ruses.d
and /lib/udev/rules.d containing rules describing initialization

of devices identified by the set of parameters. Example of

such file is presented in Fig. 5. Both rules are applied when

specified device is connected to the system. Every parameters

related to the specified device, that can be used to create udev
rules, can be viewed by tool called udevadm, see Fig.6.

udevadm info --path=/sys/bus/pci/devices/0000\:03\:00.0/

--attribute-walk

looking at device '/devices/pci0000:00/0000:00:1c.0/

0000:03:00.0':

KERNEL=="0000:03:00.0"

SUBSYSTEM=="pci"

DRIVER==""

ATTR{vendor}=="0x10ee"

ATTR{device}=="0x0008"

ATTR{subsystem_vendor}=="0x10ee"

ATTR{subsystem_device}=="0x0007"

ATTR{class}=="0x050000"

ATTR{irq}=="255"

ATTR{local_cpus}=="ffffffff"

ATTR{local_cpulist}=="0-31"

ATTR{modalias}=="pci:v000010EEd00000008sv000010EEsd

00000007bc05sc00i00"

ATTR{enable}=="0"

ATTR{broken_parity_status}=="0"

ATTR{msi_bus}==""

Fig. 6. Information about selected PCI Express device acquired by udevadm
tool.

After Hot-Plug event forced by fake HP driver, udev man-

ager based on parameters like geographic address of the device

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��$

on PCI Express bus (KERNEL parameter), vendor ID and

device ID (accordingly ATTR{vendor} and ATTR{device})

selects application to execute (RUN parameter). Script called

check firmware, presented in Fig. 7, loads simple PCI Express

driver that allows to read raw data from device and generate

for each BAR separate file in /dev directory. Information about

version of the firmware is located in BAR zero at offset zero,

therefore program pcie-rw reads this memory area. Returned

value is compared with expected firmware version and in the

case of mismatch device is removed from system by fake

Hot-Plug driver and appropriate message is logged into the

system. At the end of script simple PCI Express driver is

removed from the system. System log records generated by

#!/bin/bash

cd

./load_simple_driver

VER_R=$(./pcie-rw /dev/pcie_bar_0 r 0i 1i h)

if [${1} != ${VER_R}]; then

logger "Wrong firmware version (${VER_R})"

echo 0 > /sys/bus/pci/slots/0000:00:1c.0/power

else

logger "Loaded firmware version ${1}"

fi

cd -

/etc/develop/

./unload_simple_driver

Fig. 7. Source code of check firmware script executed by udev when new,
FPGA-based PCI Express endpoint is discovered.

simple PCI Express driver are presented in Fig. 8. Three

PCI Express BARs were discovered, in consequence script

load simple driver creates three devices /dev/pcie bar 0, /de-
v/pcie bar 1 and /dev/pcie bar 2. After firmware checking,

driver and related device files were removed from the system.

PCIe Bar Read Driver: Init

PCIe Bar Read Driver: New device ID 10EE:0008

pcie_rd_drv 0000:03:00.0: PCI INT A -> GSI 16

(level, low) -> IRQ 16

pcie_ _drv 0000:03:00.0: setting latency timer to 64

BAR 0 start : 0x50003000

BAR 0 end : 0x500037FF

BAR space : 2047 bytes (0 MB)

PCIe Bar Read Driver: Bar 0 Device (251, 0)

BAR 1 start : 0x50002000

BAR 1 end : 0x50002FFF

BAR space : 4095 bytes (0 MB)

PCIe Bar Read Driver: Bar 1 Device (251, 1)

BAR 2 start : 0x50000000

BAR 2 end : 0x50001FFF

BAR space : 8191 bytes (0 MB)

PCIe Bar Read Driver: Bar 2 Device (251, 2)

PCIe Bar Read Driver: Removing device ID 10EE:0008

PCIe Bar Read Driver: PCIe bar 0 released.

PCIe Bar Read Driver: PCIe bar 1 released.

PCIe Bar Read Driver: PCIe bar 2 released.

PCIe Bar Read Driver: Removed device ID 10EE:0008

pcie_ _drv 0000:03:00.0: PCI INT A disabled

PCIe Bar Read Driver: Release

rd

rd

Fig. 8. Information reported by simple PCI Express driver after device
discover and remove.

VI. SUMMARY

In this paper, authors present detailed description of Hot-

Plug mechanism implementation in kernel of Linux operating

system. Additionally, example usage of fake Hot-Plug driver

in conjunction with udev driver manager utilized to check

the correctness of firmware loaded to FPGA-based end-point

devices were proposed.

ACKNOWLEDGEMENT

The research leading to these results has received fund-

ing from the European Commission under the EuCARD

FP7 Research Infrastructures grant agreement no. 227579

and Polish National Science Council Grant 642/N-TESLA-

XFEL/09/2010/0. The authors are scholarship holders of

project entitled ”Innovative education ...” supported by Eu-

ropean Social Fund.

REFERENCES

[1] D. Makowski, G. Jablonski, A. Piotrowski, W. Koprek, W. Cichalewski,
W. Jalmuzna, and S. Simrock, “Survey of communication links for ATCA
in physics,” ICALEPCS 2009, October 12-16, 2009.

[2] T. Kucharski, A. Piotrowski, D. Makowski, and G. Jablonski, “PCIEx-
press communication layer for ATCA based linear accelerator control
system,” MIXDES 2009 - Mixed Design of Integrated Circuits and
Systems, 2009.

[3] A. H. Wilen, J. P. Schade, and R. Thornburg, Introduction to PCI Express:
A Hardware and Software Developer’s Guide. Intel Press, 2003.

[4] PICMG, “PCI Express Base Specification 1.1,” PICMG, Tech. Rep., 2005.
[5] R. Budruk, D. Anderson, and E. Solari, PCI Express System Architecture.

Pearson Education, 2003.
[6] T. L. Nguyen, D. L. Sy, S. Carbonari, and R. Olsson, “Contents PCI

Express port bus driver support for Linux,” Proceedings of the Linux
Symposium July 20th 23rd, Ottawa, Canada, 2005.

[7] G. Kroah-Hartman, “udev A Userspace Implementation of devfs,”
Proceedings of the Linux Symposium July 23th 26rd, Ottawa, Canada,
2003.

Adam Piotrowski received the MSc and PhD de-
grees in computer science at the Department of
Microelectronic and Computer Science at Techni-
cal University of Lodz, in 2004 and 2010 respec-
tively. His research interests include compilation
techniques, embedded and fast data acquisition sys-
tems. He is involved in development of ATCA-based
LLRF control system for XFEL accelerator.

Dariusz Makowski received PhD degree in electri-
cal engineering at the Department of Microelectron-
ics and Computer Science Technical University of
Łódź in 2006. His main areas of interests are digital
electronics, embedded systems and programmable
devices. He is engaged in the development of xTCA
standards for High Energy Physics. He is involved
in the design of distributed data acquisition and
control systems based on ATCA, MTCA and AMC
standards.

��% ���������� ���
�������� ���������� ��� �	�!
�������
 �� 	���� "���� ���� ������	 �#���
�

