
�Abstract—Distributed computing attempts to aggregate 
different computing resources available in enterprises and in the 
Internet for computation intensive applications in a transparent 
and scalable way. Fault simulation used in digital design flow for 
test quality evaluation can require a lot of processor and memory 
resources. To speed up simulation and to overcome the problem 
of memory limits in the case of very large circuits, a method of 
model partitioning and the procedure of parallel reasoning for 
several distributed simulation agents was proposed. The concept 
and implementation of web-based distributed system was 
introduced. 
 

Index Terms—distributed computing; fault simulation; critical 
path tracing; digital test 

I. INTRODUCTION 
AULT simulation is a central task used in the digital 
design process in order to estimate the quality of tests 

prepared for digital electronic device. In addition, the 
procedure of fault simulation is often required for other test-
oriented tasks such as fault diagnosis, automatic test pattern 
generation (ATPG), test compaction, design of reliable 
systems and others. For certain tasks (ATPG, built-in self test 
optimization, etc), the intermediate step of fault simulation 
need to be carried out many times hence making the 
simulation speed be key issue in the acceleration of the overall 
task performance. 

Today, complexity of integrated circuits is still increasing 
according to Moore’s law, which states that transistor density 
doubles about every two years. This trend is predicted to 
continue at least for another decade, posing serious testing 
problems. One approach to cope with the problem is to 
improve the fault analysis algorithms towards better 
scalability. However, the abundance of different fault 
simulation methods proposed during the last decades leaves 
almost no room for further improvement. Another way to gain 
practical speedup is to parallelize the task execution. There are 
several possibilities: algorithm can be parallelized, circuit 
model can be partitioned into separate components and 
simulated concurrently, fault set or test pattern set can be 
divided and simulated in parallel. 

Several parallel processing algorithms have been proposed 
to speed up fault simulation [1]. The techniques that use fault 
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partitioning is one reasonable way to decrease simulation time 
Another approach, also able to accelerate fault simulation, 
relies on test vectors partitioning. Combining fault parallelism 
with vector parallelism has been proved to be even more 
effective: easy-to-detect faults are identified with fast 
preprocessing and simulated in parallel among processors, 
remaining faults are targeted by all processors, each using 
only subset of test vectors corresponding to its partition [2].  

Circuit partitioning has got less attention, as its speedup has 
been relatively small so far. Parallel fault simulation with 
circuit partitioning was used in [3,4] for vector-synchronous 
implementations on message passing multiprocessor systems. 
Circuit partitioning approach for shared memory systems was 
presented in [5]. The method in [6] distributes the component 
models of the circuit partitions to unique processors of a 
parallel processor system for concurrent and asynchronous 
execution. Partitioning issues are not handled here, however 
manual partitioning is supported.  

Less effort has been spent in the area of algorithmic 
parallelism. For instance, the pipelined approach in which the 
specific simulation functions are assigned to different 
processors is given in [7,8]. The latter solution has been 
shown more effective than circuit partitioning. Recent 
attempts in the field are aimed to avoid redundant work by 
judicious task decomposition [1]. In addition, it adopts a 
cyclic fault partitioning method based on the LOG [9] 
partitioning and local redistribution, resulting in a well-
balanced load distribution. 

Recently, new trend has been the use of graphics processing 
units for general purpose computing by exploiting thread level 
parallelism. Fault simulation approach using faults and vectors 
partitioning is proposed in [20]. 

Current paper presents distributed loosely coupled 
asynchronous Internet-based fault simulation approach, which 
relies on model parallelism and test parallelism. Fault 
detectability computational model for the circuit is divided 
and at the same time, also test pattern set is divided. Sub-sets 
of test are evaluated on partial computational models 
concurrently on different computers in wide or local area 
network. Our approach has no specific fault list, instead faults 
reside in simulation model. During model partitioning some 
overlaping occurs as we want to avoid interdependences, 
because of the communication lags. Therefore these repetitive 
model parts are obviously simulated several times. In fault  
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coverage point of  view this does not interfere – results will be 
accumulated. This only results in some speed penalty, but this 
will be offset by gain in memory reduction. Distributed 
approach can aggregate more computational resources having 
a potential to ease the large circuits fault simulation problem.  

The presented fault analysis algorithm is based on well-
known critical path tracing (CPT) technique [10]. Traditional 
CPT consists of simulating the fault-free circuit and uses the 
computed signal values for backtracking all sensitized paths 
from primary outputs to primary inputs in order to determine 
the detected faults. The trace continues until the paths become 
non-sensitive or end at network primary inputs. Faults on the 
sensitive (critical) paths are detected by the test.  

Although by using CPT one can process all the faults by a 
single run for many test patterns in parallel, conventional CPT 
approach gives the exact results only for circuits without 
reconvergent fanouts. A modified CPT technique that is linear 
time, exact, and complete is proposed in [11]. However, the 
rule based strategy does not allow simultaneous parallel 
analysis of many patterns.  

Parallel critical path tracing in fanout-free regions (FFR) 
combined with parallel simulation of stem faults was 
investigated in [12]. In [13] the concept of parallel critical 
path tracing was generalized for using it beyond FFRs.  In 
addition, circuit in [13] is modeled by network of macros 
instead of network gates providing higher level of abstraction 
(hence higher simulation speed) but preserving gate-level fault 
modeling accuracy. To describe circuit on macro-level special 
class of binary decision diagrams called structurally 
synthesized BDDs [14] is used. 

Current distributed framework was initially inspired from 
MOSCITO system [16], intended for local tools in LAN 
mainly. Major obstacle for Internet based use was TCP/IP 
socket based communication, which conflicted with firewalls. 
More flexible web-based solution for remote tool usage was 
proposed in [17]. In current paper this concept is revised and 
improved to support distributed fault simulation. 

There exist also several general purpose frameworks for 
distributed computing like BOINC [18], Globus [28], and 
AliCE [19] for example. By far, most popular is BOINC 
(Berkeley Open Infrastructure for Network Computing), a 
non-commercial middleware system for volunteer computing, 
originally developed to support the SETI@home project, but 
intended to be useful for other applications in areas as diverse 
as mathematics, medicine, molecular biology, climatology, 
and astrophysics. The intent of BOINC is to make it possible 
for researchers to tap into the enormous processing power of 
personal computers around the world. 

A major part of BOINC is the backend server. The server 
can be run on one or many machines to allow BOINC to be 
scalable for projects of any size. BOINC servers run on Linux 
based computers and use Apache, PHP, and MySQL as a basis 
for its web and database systems. Framework uses cross-
platform WxWidgets toolkit for building GUI-s. 

BOINC is the infrastructure which downloads distributed 
applications and input data (work units), manages scheduling 

of multiple BOINC projects on the same CPU, and provides a 
user interface to the integrated system. 

Scientific computations are run on participants' computers 
and results are analyzed after they are uploaded from the user 
PC to a science investigator's database and validated by the 
backend server. The validation process involves running all 
tasks on multiple contributor PCs and comparing the results. 

Major drawback of the BOINC infrastructure is the use of 
remote procedure call (RPC) mechanisms which is often felt 
to be security risk, because they can be the route by which 
hackers can intrude upon targeted computers (even if it's 
configured for connections from the same computer). Another 
disadvantage is that BOINC servers are not simple to deploy 
as they are based mainly on a large number of PHP scripts and 
project is poorly documented which makes creating a new 
BOINC project not easy. Use of PHP over Java can not 
considered as an advantage. 

Globus is a collection of libraries and programs  that 
address common problems that occur when building 
distributed services and applications. Issues relating to 
security, resource access, management, discovery, data 
transfer, service deployment, system components monitoring 
and user control are handled. Globus toolkit makes extensive 
use of Web Services [29] to implement these infrastructure 
services. A Web service is a software system designed to 
support interoperable machine-to-machine interaction over a 
network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems 
interact with the Web service in a manner prescribed by its 
description using Simple Object Access Protocol (SOAP [35]) 
messages, typically conveyed using HTTP with an XML 
serialization in conjunction with other Web-related 
standards [29]. Initially, work on Globus was motivated by 
demand of virtual organizations in science, then business 
applications became also important. Now, Globus is deployed 
in many large projects like TeraGrid [30], Open Science 
Grid [31], LHC Computing Grid [32], etc. Globus services are 
used to support different communities, each of which then 
executes their own application specific code on top of those 
services. Disadvantage of Web service based solutions is their 
reliance on XML markup notation- nicely readable to human 
being and easy to parse for computer programs, but it requires 
more processing power and network bandwidth. 

AliCE, developed in National University of Singapore, 
attempted to become grid development system instead of just 
being collection of grid tools. Similarly to Globus, AliCE core 
layer has components for resource management, discovery, 
and allocation, data management, monitoring and accounting, 
communication and security infrastructure. On top of that 
comes extensions layer consisting distributed-shared memory 
programming templates, runtime support infra–structure and 
advanced data services. Running system has consumer, 
producer and resource broker entities. Consumer submits 
application code to grid, resource broker directs the 
application to appropriate task farm manager which initiates 
the application and creates a pool of tasks. Task references are 
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returned to the resource broker, which schedules the tasks for 
execution on producers. Results are returned to the consumer. 
Communication supports the migration of codes, data and 
results via “Space”– a special form of shared memory. 
Communication is carried out with objects. Objects and code 
are serialised and packed into jar archive fail. AliCE is based 
on Java Jini technology [33] and JavaSpaces [34]. Java Native 
Interface (JNI) is used to invoke non-Java code. Authors have 
used the system in several projects, but it seems that activity 
around AliCE has lost its momentum at present. Reasons are 
not clear, since technology itself is still promising. Only 
drawback in our point of view is that Jini technology is based 
on Remote Method Invocation (RMI)- although elegant 
programming solution for distributed computing, were one 
program can remotely invoke methods physically residing in 
other machine, however, firewall traversal can be problematic 
as dedicated communication ports are needed. Strict security 
policy might not allow that. 

 The rest of the paper is organized as follows. Section II 
gives theoretical explanation of  the presented fault simulation 
algorithm and describes the procedure of construction of 
computational model. The approach for computational model 
partitioning is given in Section III. Section IV presents web-
based infrastructure for distributed simulation. Experimental 
results are discussed in Section V and finally conclusions 
about the presented method are drawn in Section VI. 

II. FAULT SIMULATION ALGORITHM 
The overall goal of fault simulation is to evaluate the 

behavior of a circuit in case of presence of faults inside it. In 
particular, fault simulation has to determine whether the 
output response of a circuit is changing due to the influence of 
a fault or not. A fault which effect propagates to primary 
outputs under current input stimulus is referred as detected by 
the current test pattern. 

Fault simulator typically works with a specific fault model. 
In this paper we will consider fault simulation algorithm that 
works with single stuck-at fault model (SAF). The presence of 
stuck-at fault in a digital circuit permanently fixes the value of 
corresponded signal line to logic one (stuck-at 1) or logic zero 
(stuck-at 0). The single stuck-at model that is commonly used 
in practice permits only sole stuck-at fault to present in a 
circuit at a time. 

The input data of fault simulator is a set of test patterns 
together with the model of a circuit. In general case, the result 
of the execution of fault simulator is a fault table that shows 
what of the modeled faults are detectable by each of the given 
test patterns. 

A. Theoretical background 
Let us consider combinational circuit as a network of 

blocks where single block represents a subnetwork of gates 
with single output. Then, a fanout-free region (FFR) of 
combinational circuit is a block that does not contain 
reconverging fanout stems (i.e. represents a tree-like 
subcircuit). Since the traditional critical path tracing technique 

in FFR [10] is independent of the region size, we will consider 
in the following the combinational circuits as networks of 
FFRs with maximum size. 

In [36] it has been shown that the set of faults on primary 
inputs and the faults at the fanout branches of a combinational 
circuit is the representative set of collapsed faults that has to 
be tested. Therefore, it is enough to consider only the faults 
that reside on inputs of FFR blocks in order to carry out 
complete fault simulation for an arbitrary circuit. 

Consider a fanout-free region represented by a Boolean 
function y = F(x1,…, xi, xj, … xn). The task of fault simulation 
can be reduced to calculation of Boolean derivatives: if 
�y/�xj = 1 then the fault is propagated from xj to y. This check 
can be performed in parallel for a set of test patterns. In order 
to extend the parallel critical path tracing beyond the fanout-
free regions we use the concept of partial Boolean 
differentials. 

Consider a fan-in subcircuit F of the converging fanout region 
depicted in Fig. 1, and represented by a function y = F(x1, …, 
xi, xj, … xn). Each input of function F corresponds either to 
input without fanout or to branch of fanout input. 

Assume that the inputs x1,…,xi of the subcircuit F are 
connected to the fanout stem z via subcircuits without 
reconvergencies and represented by functions  x1 = f1(z,X1), 
…, xi = fi(z,Xi), where Xi are vectors of variables. Then all 
possible fault propagation conditions for the circuit in Fig. 1 
can be represented by the full Boolean differential: 
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By the Boolean variable dx we denote the erroneous change 
of the value of x because of a propagated fault. In [13] we 
have shown that if a SAF is detected by a test pattern at y then 
the fault at the fanout stem z which converges in y at the 
inputs x1, …, xi, is also detected iff 
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From (2), a method results for generalizing the parallel 
exact critical path tracing beyond the fanout-free regions. All 
the calculations in (2) can be carried out in parallel since they 
are Boolean operations. 

In a general case of nested reconvergencies the formula (2) 
can be used recursively. If a stuck-at fault is detected by a test 
pattern on the output y of a subcircuit in Fig. 2 with two 
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Figure 1. Reconvergent FFR in a circuit 
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nested reconvergencies, y = Fy(x1,z,Xy) and z = Fz(x,Xz), where 
Xy and Xz  are not depending on x, then the fault at the 
common reconverging fanout stem is also detected iff 
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Figure 2. Nested reconvergencies in a circuit 

The formula (3) can be used for calculating the influence of 
the fault at the common fanout stem x on the output y  
of the converging fanout region by calculation of partial 
Boolean differentials, first dxFz, and then dxy. The formula (3) 
can be iteratively generalized for arbitrary configuration  
of nested reconvergencies by topological analysis of the 
circuit. On the other hand the derived full Boolean 
differentials can be easily transformed into fast computable 
critical path tracing procedures to be carried out in parallel for 
sets of test patterns. 

The described exact parallel path tracing fault analysis is 
carried out in the following sessions:  
� topological pre-analysis to create topology graph of 

source circuit 
� construction of computational model of the circuit that 

consist of Boolean formulas for critical path tracing 
beyond FFRs. 

� parallel fault backtracing on the created computational 
model 

The topological pre-analysis and construction of 
computational model are performed only once to serve all the 
next sessions of the procedure. 

B. Topological pre-analysis 
The first procedure of the topological analysis is carried out 

in the direction from primary inputs to primary outputs of the 
circuit. By this procedure, all the fanout stems and all the 
reconvergent fan-in nodes of the circuit will be found. As the 
result of the procedure, a graph G = (N, U) is created which 
represents a skeleton of the circuit. Let N be the set of nodes 
in G that represent either outputs of the gates with fanout 
branches or the outputs of fan-in gates where at least two 
paths from the same fanout stem converge.  

Each edge (x,y)�U between two neighbour nodes x and y in 
the graph G represents a signal path in the circuit through the 
gates without fanouts and without fan-ins with reconvergencies. 
The subscripts at the node variables are introduced to 
distinguish the branches of the fanout nodes. The node label is 
interpreted as the signal variable of the corresponding gate: 
the variable x represents the output of a gate, and the variable 
xj represents the j-th branch of the gate’s fanout. 

Denote by RO 
 N the subset of all fan-out nodes which 

reconverge and by RI 
 N the subset of all reconvergent fan-
in nodes. To each x � RO we refer the set of nodes RI(x) 
 RI, 
so that for each y � RI(x) there exist at least two different 
converging paths from x to y.  

Consider in Fig. 3 a reconvergency graph which represents a 
topological skeleton of a circuit with primary outputs {A,B,C}.  

During the topological analysis, all the paths in the circuit 
are traced, and the found reconvergencies are fixed in the 
form of subsets: 

RO = {1,2,3,4,5,6},  
RI = {4,A,B,C,D,E,F,G}, 
RI(1) = {A,D,F},   RI(2) = {B}, 
RI(3) = {E, B,C},   RI(4) = {D},  
RI(5) = {B},     RI(6) = {C}. 

Before creating a joint calculation model of the whole 
circuit for fault tracing purposes, the next step is to build an 
ordered set N* of all the nodes in G. For reconvergency graph 
in Fig. 3 the following ordered set of nodes is constructed: 

N* = (A,B,C,D,E,F,G,6,5,4,3,2,1). 

C. Model creation procedure 
Each edge (xj,y) in the reconvergency graph G corresponds 

to a signal path in the circuit. Let us denote by the pair XY the 
formula of the Boolean derivative �y/�x. In this case, �y/�x = 
1 iff flip of signal at x will also produce change at y. Thus the 
ultimate goal of the procedure of construction of calculation 
model is to build the formulas for calculation of �y/�x for 
every node x in graph G and for each y that belongs to set of 
nodes representing primary outputs. Although the complete 
procedure of construction is described in [13] we will 
highlight the basic principles of the algorithm. 

To calculate dependency of output of FFR block to its input 
the critical path tracing procedure in a reconvergent fanout is 
applied [12]. The latter corresponds to calculation of Boolean 
derivative �y/�xi where xi is the i-th input of FFR with output 
y. For this case the formula xjy is constructed where j is the 
index of the respective fanout branch which corresponds to 
the input xi (in case if node X does not belong to the set RO 
this index can be omitted).  

For instance, critical path tracing inside FFR could be used 
for calculating the dependency of output block A on the fault 
located at the first branch of fanout node 1 (see Fig. 3). For 
this purpose, we create the respective formula 11A and put it 
into computation model. 

Figure 3.  Reconvergency graph of a circuit 
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For Boolean derivative �y/�z where the path between z and 
y consists of a simple chain of gates without reconvergencies 
we can build for the path a formula zy by the chain rule using 
logic AND operation of Boolean derivatives of the gates on 
the path: 
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Here, zi corresponds to i-th branch of fanout z that forms  
path to y. As an example, we can use this procedure  
to calculate the dependency of output of node B to the fault  
on output of node F (see Fig. 3) by construction of the 
following formula: 

FB = F1D � D2B 

If two nodes z and y form a reconvergency, we use the 
formula obtained in [13]: 
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The subformulas �xi/�zi in (5) are created step by step 
during path tracing. These formulas are used also for 
calculating the detectabilities of faults on the corresponding 
paths. We can calculate now for the given path (z,y) �xi/�zi as 
a part of the formula (5), and then update the result according 
to (4) to get the values of �y/�zi. In such a way we achieve in 
critical path tracing two goals: we calculate the activation of 
the faults on the paths up to the output of the gate with 
reconvergency, and up to the inputs of the same gate to be 
able to take into account the reconvergency effect. 

In the case of the nested reconvergencies, we take them into 
account by superpositioning formulas (3) as shown in [13]. 
This operation follows also automatically during the 
backtracing analysis of the circuit.  

Table I presents a part of computational model constructed 
for graph G in Fig 1. The formulas were created for nodes in 
the order of N* shown in the column “Node”. The formulas ziy 
and zy denote the derivatives �y/�zi and �y/�z, respectively. 
The notation Rzy(z1y,...,ziy) is introduced to denote the formula 
(5), where the parameters zjy represent the derivatives �y/�zi, 
and  i  is the number of input of the gate y where the paths 
from fanout z reconverge at y along j-th fanout branch. The 
last rows of the table contain the formulas that unite the results 
of calculation of detectability of fanouts for all of primary 
outputs. For instance, the detectability of fault at node D can 
be expressed as a union of dependabilites of primary output A 
and B on signal flip at fanout D. 

After creating the computational model, we proceed to the 
test pattern simulation phase. First, a subset of test patterns is 
simulated in parallel to determine the fault-free values of all 
signal lines in circuit. Second, based on these values and using 
the formulas in the computational model we determine which 
SAF faults are detected by this subset of test patterns.  

 

TABLE I.  COMPUTATIONAL MODEL FOR GRAPH G 

# Node P Formulas # Node P Formulas 
1 A 1 11A 22 F 1 12D=12F�F1D 
2 A 1 D1A 23 F 1 41D=41F�F1D 
3 B * D2B 24 G 1 42G 
4 B 1 22B 25 G 2 51G 
5 B 2 E1B 26 G 1 42D=42G�G1D 
6 C 2 E2C 27 G 2 51A=51G �G1A 
7 C 2 62C 28 G 2 51B=51G �G1B 
8 D 1 F1D 29 6 2 613 
9 D 1 G1D 30 6 2 R6C(61C, 62C) 
10 D 1 F1A=F1D�D1A 31 5 2 315 
11 D 1 F1B=F1D�D2B 32 5 2 5B=R5B(51B,52B) 
12 D * G1A=G1D�D1A 33 4 1 134 
13 D * G1B=G1D�D2B 34 4 1 214 
14 E 2 52E 35 4 1 R4D(41D, 42D)  
15 E 2 61E 36 4 1 4A=R4D�D1A 
16 E 2 52B=52E�E1B 37 4 1 4B=R4D�D2B  
17 E 2 52C=52E�E2C …    
18 E 2 61B=61E�E1B  D 1 D = D1A � D2B 
19 E 2 61C=61E�E2C  E 2 E = E1B � E2C 
20 F 1 12F  F 1 F = F1A � F2B 
21 F 1 41F …    

III. MODEL PARTITIONING 
The computational model constructed in the previous 

section allows to carry out fast efficient fault simulation of a 
circuit minimizing the number of repeated computations. The 
experimental results presented in Section V show that the 
proposed fault simulation method outperforms several 
commercial and academic tools. Nevertheless, the speed of 
simulation of very large designs on a single computer can be 
unacceptably slow even in case of efficient algorithms. In 
addition, the proposed technique requires certain amount of 
memory for storing the formulas used in the model. Again, for 
large circuits this requirement can exceed the amount of 
available memory. In the last case, the fault simulation cannot 
be performed for such circuit or the efficiency of fault 
simulator is extremely decreased. 

To overcome these problems the method of splitting of 
computational model is proposed. By using the proposed 
approach it is possible to split the process fault simulation into 
a number of parallel sub-processes. Then for each sub-
process, a partial computational model is constructed and the 
separate simulation procedure is run. Moreover, it can be 
easily seen, that such method gives an opportunity to use 
distributed environment for achieving higher simulation 
speed. Although, possible overlap between partial calculations 
may introduce certain costs, the overall performance of 
distributed simulation will overcome the speed of fault 
analysis on a single machine. 

Let us define the set PI that is formed out of the nodes in G 
that are directly connected to primary inputs. Then �(PI) 
denotes a partition of original set PI into non-overlapping 
subsets and Bi denotes an ith subset of �. Then, G’i(N’, U’) is a 
subgraph of the graph G(N, U) for which N’
N and, x�N’ 
only if there is a signal path from one of the primary inputs of 
Bi to x. Let us call G’ as partital reconvergency graph. Then 
for each of the partial reconvergency graphs a separate 
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computational model is constructed and fault simulation is 
carried separately for each corresponding part of circuit.  

For the reconvergency graph in Fig. 3 we have set 
PI = {1,2,3}. Let us define the partition � on the set PI as: 

};,{ 321 iii�� . The partial reconvergency graphs G1 and G2 
are presented in Fig 4. The formulas belonging to the partial 
calculation model that corresponds to G1 are marked by “1” in 
the columns “P” of Table I whereas formulas that correspond 
to G2 are marked as “2” (“*” means that formula belongs to 
both models). Note that overlap is very likely to occur 
between formulas of partial computational models (see Table I). 

Obviously, the effectiveness of the proposed method 
strongly depends on the initial partition of input nodes. As for 
the current implementation, no analysis is conducted to find 
the optimal selection of partition � for minimizing the size of 
overlapped area. Instead of that, � is selected randomly taking 
into account only the amount of available memory. For this 
purpose the algorithm that uses internal memory counter for 
keeping the currently allocated memory size stops the 
construction of partial calculation model when the maximally 
allowed amount of allocated memory is reached. The full 
description of algorithm is presented in [14]. 

IV. DISTRIBUTED SIMULATION ENVIRONMENT 
Our web-based infrastructure is built according to the 

client-server three-tier concept. There is a master server, 
several application servers and arbitrary number of 
users (Fig. 5). Master has a role of the mediator,  it interacts 
both with users and simulation agents. Users and agents work 
in “polling” mode, whereas master is working in “answering” 
mode. Users can communicate with master only. Simulation 
agents reside on application servers. Agent consists of 
software layer wrapping the simulator tool and providing 
network communication abilities. On a request, agents will 
start instances of the simulator tool. Each user has own 
workspace in the server-side database, but large files are 
stored directly in file system for performance reasons – in the 
database only references to the file location are maintained. 

At first, master server and agents must be started by system 
administrators. Invocation of the agents can be automated by 
use of system start-up scripts. Thereafter, users can submit 
tasks which are passed initially to the master and stored there 
until an idle agent will ask for a new task. When task is 

complete, agent passes the fault simulation results back to 
master, who assembles the partial fault tables, calculates the 
total fault coverage and stores the data. Results are delivered 
to user later when requested. 

System components can be executed on different computing 
platforms, however the simulator instances must run on their 
native platform. Master servlet usually resides separately from 
agents. Moreover, master and agents can be located in 
different LANs. Firewall traversal is no problem as only one 
web server port must be configured on Master server.  

A. Implementation 
Web-based infrastructure is built on Java Applet/Servlet 

technology [24]  and popular platform independent open 
source relational database MySQL[25]. Communication flow 
between system components and implementation details can 
be seen in Fig. 5. Servlet is a Java application that runs in a 
Web server or special application server and provides server 
side processing like different calculations, database access, e-
commerce transactions, etc. Servlets are designed to handle 
HTTP requests and are the standard Java replacement for a 
variety of other methods, including CGI scripts, Active Server 
Pages (ASPs) and proprietary C/C++ plug-ins for specific 
Web servers (ISAPI). Because servlets are written in Java, 
they are portable between servers and operating systems. The 
servlet programming interface (Java Servlet API) is a standard 
part of the Java EE (Enterprise Edition of Java), the industry 
standard for enterprise Java computing. Tomcat[26] is open 
source  servlet container (application server software) which is 
one way to run Java Servlets. Tomcat is developed by the 
Apache Software Foundation (ASF) and implements the Java 
Servlet and the JavaServer Pages (JSP) specifications from 
Sun Microsystems, and provides a pure Java HTTP web 
server environment to run a Java code. 

 In conclusion, Tomcat and servlets running on it play 
important role in order to access our intranet resources on 
application servers and the MySQL database. It is simple and 
light weight alternative to other full blown enterprise scale 
solutions. 

 

Tool encapsulation 
Our simulator is implemented in C language, it has no 

graphical interface and network communication abilities. In 
order to integrate it into web based environment, it is 
necessary to implement additional software (wrapper) layer. 
Simulator will be invoked from Java program (Agent), which 
allows to adapt the input data, convert the tool-specific data, 

Figure 4.  Partial reconvergency graphs G1 and G2
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simulation results (log files, test vectors, etc), map the control 
information to the embedded tool, transfer and pass the status 
information (warning and error messages) to be submitted to 
the user, etc. Technically simplest way is to encapsulate a tool 
as an entire program. Tool has to be able to run as a batch job. 
Integration of other tools is then also possible similar way. 
Also embedding of a library (e.g. C, C++ routines) via the 
Java Native Interface (JNI) could be promising and also direct 
integration of Java-classes and applications (especially for 
Java software). 

 

Data management 
Data handling takes place in coordinator servlet. Problem is 

that web-based HTTP communication is stateless and session 
is valid for short time only, but simulation process may run 
much longer. Therefore, users must be identified, their tasks 
and results must be stored for later access. 

Data module has three layers: presentation (user interface), 
business-logic (database queries, data processing) and physi-
cal database. First two layers are implemented in Java. User is 
accessing database only via presentation layer, which consists 
of several functions to run middle layer queries. Database 
access is implemented according to Data Access Object 
(DAO) design practice. Data access objects manage access to 
relational databases. For each table in a relational database 
there corresponds one Java class. Database table attributes 
map to Java class properties. For each property, there exist 
‘set’ and ‘get’ methods. Additionally, DAO class has methods 
to insert, update and query the records in the database tables. 
For example, for table “Tasks”, we will have at least 
properties like ‘taskId’, ‘userId’ and ‘status’; methods could 
be like ‘getTaskId’, ‘setStatus’, ‘insertTask’, 
‘getCompletedTask’, etc. Standard Java mechanism for 
accessing databases is using Java Database Connectivity 
(JDBC) API. For convenience purposes, we have captured 
basic DB connection code into single DB access class and 
every specific DAO class, like ‘TasksDAO’ class, extends that 
class – i.e. basic connection methods are inherited and used 
inside the class.  

 Alternatively, it could be possible to use popular 
Hibernate [21] and Spring [22] frameworks to simplify objects 
to relational DB mapping (ORM). For large and mission 
critical projects also Java EE technology like Enterprise 
JavaBeans is available[23]. However, for simple data 
persistency in current situation, proposed solution is adequate 
and was faster to implement. Setting up and closing DB 
connections is time consuming operation, therefore we have 
used Tomcat’s native connection pooling to speed up DB 
transactions. 

 

Communication 
Use of applet/servlet approach means that general 

communication is based on HTTP protocol. The tools on 
different computers and on different computing platforms 
(UNIX, Linux, Windows) can easily exchange data as 
serialized Java objects. Data passing between components is 
implemented following Transfer Object (TO) design practice. 

Transfer object is a lightweight version of DAO object, it has 
only properties and ‘get’ and ‘set’ methods. Information is 
sent as data bundle as opposed to single strings. 

HTTP protocol allows us also easy firewall traversal as we 
can use default web server port and Java servlet extensions on 
web servers as sort of proxies in order to reach intranet 
resources. There is no need for opening extra ports in the 
firewall on the user side as it is the case in TCP/IP socket 
based communication or when relying on Java RMI (which 
would be major restriction). Communication can be secured 
via SSL encryption by appropriate modifications in Tomcat 
configuration file, when necessary. 

 

Graphical User interface 
User interface (GUI) is based on Java Applet, which can be 

integrated into HTML page when needed. Java applets are 
very versatile in features and easy to develop. For rapid 
prototyping we have used NetBeans IDE[27], which supports 
visualised GUI development with drag and drop operations. 
Final tweeks to generated code still had to be done manually. 

User GUI has fields to gather test tool’s parameters, allows 
browsing for circuit model file, has button to start the tool, a 
console window to display all the messages from the running 
tool. When the task is complete, results download is enabled. 
User can browse and select the folder where to save results. 
Since local hard drive access for usual Java applets is 
restricted for security reasons, then GUI applet had to be 
signed digitally. We used so called self-signed certificate for 
simplicity. Certificate shows owner specific information. Only 
difference for end user is that when signed Applet is first time 
downloaded into user’s computer, informative dialog box is 
displayed. It is user’s responsibility to trust or untrust the 
origin and contents of the Applet. User can contact Applet 
owner about authenticity of certificate, when question arises. 
User needs the Java Runtime Environment (JRE) to run GUI. 

B. Workflow of distributed simulation 
At first, user specifies the parameters and source design for 

the simulation tool (see Fig. 5). In addition, the size of the 
simulation task can be predefined. Thereafter GUI module 
contacts with master server and circuit along with the 
parameters are passed to it automatically. The task coordinator  
process on master records all requests from user(s) to the DB. 
Test agents poll constantly the Master and if any of subtasks is 
scheduled by coordinator process, the agents receive the 
corresponding parameters and circuit file along the test 
patterns for starting native simulator tool. 

In the beginning, simulator constructs calculation model 
taking into account the memory limit of the subtask. While 
reaching the limit, the simulator saves the breakpoint 
information into local file system. Simulation agent reads the 
breakpoint information and passes it to the Master server 
where it will be stored for other simulation agents. When next 
idle agent is polling, it will get the circuit model along with 
parameters and breakpoint information. The new instance of 
simulator started by the agent, constructs calculation model 
starting from the breakpoint hence, the updated breakpoint 
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information will be saved and passed to Master server by the 
agent. Simulator agents wait until their subtasks will be 
completed and report results back to Master server.  

The process repeats until there are no subtasks left. Note 
that simulators need to be started subsequently but after that 
they run concurrently (the starting delay is small compared to 
runtime). However, finishing order of simulators may not be 
the same as starting order as simulation speed depends on the 
piece of the calculation model: some parts are more difficult to 
simulate. After all simulators are finished, the Master server 
assembles sub-results into the final result and stores it in the 
database. Then final result is passed to user when requested. 

For each simulator there is a dedicated agent that must 
reside on the same computer. In case of multiprocessor 
computer, it is possible to run several agents and simulators 
concurrently on the single computer. Simulation agent will 
accept only one task at time. It is reasonable to have one agent 
for each processor because operating system typically assigns 
running tasks to available processors. 

V. EXPERIMENTAL RESULTS 
Table II presents the single processor fault simulation 

results for the large circuits of three benchmark sets: 
ISCAS’85 and combinational versions of ISCAS’89 and 
ITC’99 (column 1). The second column shows the size of 
each circuit (number of equivalent 2-input gates). Following 
columns present the simulation results for various fault 
simulators: the approach described in [11] (column 3), two 
commercial fault simulators from major CAD vendors C1 and 
C2 and the proposed method (column 6). The last row shows 
the average speed gain in comparison with other methods. 

TABLE II.  SIMULATION RESULTS (NO MODEL PARTITIONING) 

Circuit Fault simulation time, s 
 

Gates 
[11 ] C1 C2 New 

   c1908 618 640 12 2.97 0.36 
   c2670 883 560 24 2.24 0.4 
   c3540 1270 770 43 7.48 0.9 
   c5315 2079 1270 57 5.55 0.76 
   c7552 2632 1480 88 8.14 1.17 
   s13207_C 3214 N/A 70 5.64 2.03 
   s15850_C 3873 N/A 111 12.06 2.63 
   s35932_C 12204 N/A 390 23.63 5.73 
   s38417_C 9849 N/A 310 31.44 6.85 
   s38584_C 13503 N/A 320 23.22 6.37 
   b14 9150 N/A N/A 49.24 14.01 
   b15 8877 N/A N/A 39.06 25.79 
   b17 31008 N/A N/A 117.64 75.40 
   b18 104580 N/A N/A 620 344.5 
   b19 210585 N/A N/A 1353 750.1 
Average speed gain 1393 53.3 4.4 1 

  

The simulation was carried out for the sets of 10000 
random patterns without usage of fault dropping (full fault 
table constructed). The experiments were run on a 1500MHz 
SUN UltraSparc IV+ server with Solaris 10 operating system, 
except the experiments data taken from [11] that were 
obtained on a 2.8GHz Pentium 4 under Windows XP. 

TABLE III.  ANALYSIS OF CIRCUITS STRUCTURE 

Circuit Total 
#fanouts 

Max depth Fanouts for 
input 

Fanout    % 

   c1908 223 16 109 49 
   c2670 290 16 115 40 
   c3540 356 16 246 69 
   c5315 510 16 138 27 
   c7552 812 15 661 81 
   s13207_C 1224 16 131 11 
   s15850_C 1518 25 260 17 
   s35932_C 5295 10 1324 25 
   s38417_C 4569 16 233 5 
   s38584_C 3946 19 253 6 
   b14 2409 44 2023 84 
   b15 2353 58 1392 59 
   b17 8145 71 1518 19 
   b18 31066 79 6406 21 
   b19 63095 82 11541 18 

 

Table III presents detailed characteristics of the circuits. 
Column 3 shows maximal depth (in fanouts) for each circuit. 
It can be seen that the maximal depth does not grow as fast as 
the number of fanouts (thus circuits are growing more in 
width dimension than in depth). Column 4 shows maximal 
count of fanouts that are driven (immediately or indirectly) by 
a single primary input thus roughly estimates the minimal size 
of slice we can get when dividing the calculation model (by 
current algorithm). This value also constraints the granularity 
of divided parts and defines a minimal amount of memory 
required for fault simulation. Again for many circuits the ratio 
of minimal slice to total fanout count decreases with the 
growing size of circuits (see last column). However there are 
exceptions (e.g. b14 and b15 benchmarks).  

In experiments with distributed solution we measured the 
overall speed-up, memory reduction and communication 
overhead in order to determine how well the current task 
partitioning solution scales when the number of processing 
units increases. Simulation was carried out on the same 
UltraSPARC servers. Tomcat servlet engine and MySQL DB 
were running on 2-core AMD Athlon 64 6000+ 3GHz 
processor with 2GB memory. User applet was also executed 
on the similar Athlon machine. Circuit loading takes about a 
second for the input files on the user computer. File transfer to 
the database and user notification takes about 6 seconds. 
Thereafter, simulation agent receives files from Master server 
with 4-5 seconds delay. The total communication delay was 
approximately 12-16 seconds in case of distributed web-based 
solution. The total communication overhead was about 1% 
compared to single processor solution in case of largest 
circuits. The overhead depends on the size of the circuit and 
the number of test vectors simulated. 

Distributed fault simulation results are presented in 
Table IV. 100K test patterns were applied to each circuit. As 
we can see, model build time for subtask (circuit slice) is very 
small (0.1% for b18 circuit) compared to simulation time. 
Final simulation time is dominated by the longest subtask 
simulation time. We see that there is some deviation from 
ideal mean time. This implies that model partitioning could be 

�%� ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����



still improved - model slices could be more balanced in size. 
This would lead to more equal and shorter simulation times 
and user would get final result faster. However, the 
possibilities of balancing the partitioning of the model depend 
essentially on the circuit structure. 

TABLE IV.  DISTRIBUTED SIMULATION RESULTS 

Circuit B17C B18C B21C B22C 

 Max model partitions     13    8   12     13 
 Max model build, s      0.24   1.83   0.32    0.37 
 Max subtask simul., s     214  1534   146    195 
 Subtask simul. deviation, %     21.0  24.4   15.7    5.5 
 Model size reduction, x     4.1  2.8   2.5    2.6 
 Speedup by model partition      3.2  6.4   2.5    2.9 
 Speedup by test partition    10.3  7.9   8,7   10.0 

 
 

The last rows of Table IV present simulation speed-up for 
the simulation distributed on several processors compared to 
single processor local simulation. Scalability in case of model 
partitioning is degrading due to model pieces overlapping. For 
the purpose of fair comparison, the speedup results in rows 6 
and 7 are calculated for the same number of partitions (first 
row in Table IV) for both types of partitioning. It is interesting 
to see that in case of larger circuit b18 model partitioning 
speedup is quite close to test partitioning speedup. Figure 6 
shows that initially, up to 6 processors model partitioning has 
an advantage compared to test partitioning. Integrated speedup 
for circuit b18 compared to single processor local simulation 
can be observed in figure 7. Using for example 8 processors 
(2 processors for model partitioning dimension and 4 
processors for test partitioning dimension) would lead 15.6 
time integrated speedup which is considerably better than just 
using model partitioning (4.1x) or test partitioning (7.9x).  

Comparing simulation speed to GPU based solution in [20], 
our approach would require 5 processors to get similar result 
for b22 circuit (27599 gates, 32K vectors).  

 

VI. CONCLUSIONS 
Web-based distributed fault simulation approach has been 

proposed in this paper. In contrast to existing solutions, we 
have developed Internet based loosely coupled system, which 
potentially allows seamlessly aggregate computers of 
dislocated working groups into one powerful simulation 
application. Model partitioning has been proved to be useful 
as it allowed to speed up the simulation up to 6.4 times and at 
the same time to reduce the required memory amount 2.8 
times on 8 processors compared to single processor simulation 
in case of the largest circuit b18. Model partitioning is able to 
outperform the test partitioning when number of processors is 
small. Further speedups (15.6 times for 8 processors, for 
example) can be achieved by combining model and test set 
partitioning. Model partitioning clearly helps to boost the 
simulation speed. Our approach favors larger circuits. Design 
pattern proposed in current paper can be easily used for other 
distributed applications, only task partitioning is specific. 

REFERENCES 
[1] Han and Soo-Young Lee, “A Parallel Implementation of Fault 

Simulation on a Cluster of Workstations,” in Proc. IEEE International 
Symposium Parallel and Distributed Processing IPDPS, 2008 

[2] E. M. Rudnick and J. H. Patel, “Overcoming the serial logic simulation 
bottleneck in parallel fault simulation,” in Proc. 10th Int. Conf. VLSI 
Design, 1997, pp. 495-501. 

[3] R. B. Mueller-Thuns, D. G. Saab, R. F. Damiano,and J. A. Abraham, 
“Portable parallel logic and fault simulation,” in Proc. Int. Conf. CAD, 
1989, pp. 506-509. 

[4] J. F. Nelson, “Deductive fault simulation on hypercube 
multiprocessors,” in Proc. 9th ATT Conf. Electronic Testing, 1987. 

[5] S. Patil, P. Banerjee, and J. Patel, “Parallel test generation for sequential 
circuits on general purpose multiprocessors,” in Proc. 28th ACM/IEEE 
Design Automation Conf., San Fransisco, CA, 1991. 

[6] S. Ghosh, “NODIFS: A noval, distributed circuit partitioning based 
algorithm for fault simulation of combinational and sequential digital 
designs on loosely coupled parallel processors,” LEMS, Division of 
Engineering, Brown University, Providence, RI, Tech. Rep., 1991. 

[7] P. Agrawal and V. D. Agrawal, K. T. Cheng, and R. Tutundjian, “Fault 
simulation in a pipelined multiprocessor system,” in Proc. Int. Test 
Conf., 1989, pp. 727-734. 

49,9 (1)
35,1 (2)

21,1 (4)

100K (1)

50K (2)
25K (4)

12,5K (8)

0,0
5,0

10,0
15,0

20,0

25,0

30,0

35,0

40,0

45,0

S
pe

ed
up

Model size, Mb 
(#proc)

Tests 
(#proc)

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0

1 2 4 8
# processors

S
pe

ed
up

0,0

0,5

1,0

1,5

2,0

2,5

3,0

M
em

or
y 

re
du

ct
io

n

Model part. Test part. Mem. Red.

Figure 6. Circuit b18 experimental results Figure 7. Integrated speedup for circuit b18 

������������	 
�����	 �� 
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �%Z



[8] S. Bose and P. Agrawal, “Concurrent fault simulation of logic gates and 
memory blocks on message passing multicomputers,” in Proc. Design 
Automation Conf., 1992, pp. 332-335. 

[9] M. B. Amin and B. Vinnakota, "Data Parallel-Fault Simulation,"IEEE 
Trans. VLSI Systems, vol. 7, no. 2, pp. 183-190, Jun. 1999. 

[10] M. Abramovici, P.R. Menon and D.T. Miller, “Critical Path Tracing - an 
Alternative to Fault Simulation,” in Proc. 20th Design Automation Conf., 
1983, pp. 214-220. 

[11] L. Wu and D.M.H. Walker, “A Fast Algorithm for Critical Path Tracing 
in VLSI”, in Proc. Int. Symp. Defect and Fault Tolerance in VLSI 
Systems, 2005, pp.178-186.  

[12] S. Devadze, J. Raik, A. Jutman and R. Ubar, “Fault Simulation with 
Parallel Critical Path Tracing for Combinational Circuits Using 
SSBDDs”, in Proc. 7th IEEE LATW Conf., 2006, pp.97-102. 

[13] R. Ubar, S. Devadze, J. Raik and A. Jutman, “Parallel Fault Backtracing 
for Calculation of Fault Coverage”, in Proc. 13th Asia and South Pacific 
Design Automation Conference (ASPDAC), Korea, 2008, pp. 667-672. 

[14] J.Raik and R.Ubar, “Feasibility of Structurally Synthesized BDD 
Models for Test Generation,” in Proc. European Test Workshop, 
Barcelona, 1998, pp. 145-146. 

[15] S. Devadze, R. Ubar, J. Raik and A. Jutman, “Parallel Exact Critical 
Path Tracing Fault Simulation with Reduced Memory Requirements,” in 
Proc. 4th IEEE Int. Conf. Design & Technology of Integrated Systems in 
Nanoscale Era, Cairo, Egypt, 2009. 

[16] A. Schneider et. al. “Internet-based Collaborative Test Generation with 
MOSCITO,” in Proc. DATE, Paris, France, 2002, pp. 221-226. 

[17] E. Ivask, J. Raik, R. Ubar and A. Schneider, “WEB-Based Environment: 
Remote Use of Digital Electronics Test Tools,” in Virtual Enterprises 
and Collaborative Networks, Kluwer Academic Publishers, 2004, pp. 
435-442. 

[18] BOINC. http://boinc.berkeley.edu/ 
[19] Y.M. Teo and X. B. Wang, “AliCE: A Scalable Runtime Infrastructure 

for High Performance Grid Computing,” in Proc. IFIP Int. Conf. 
Network and Parallel Computing, Springer-Verlag Lecture notes in 
Computer Science, Wuhan, China, October 2004. 

[20] K. Gulati, S. P. Khatri, “Towards Acceleration of Fault Simulation using 
Graphics Processing Units,” in Proc. DAC, Anaheim, California, 2008. 

[21] C. Bauer and G. King,Hibernate in Action. Manning Publications, 2004 
[22] C. Walls, Spring in Action, Third Edition. Manning Publications, 2011. 
[23] D. Panda, R. Rahman and D. Lane, EJB 3 in Action. Manning 

Publications, First Edition, 2007. 
[24] Java Servlet Technology. 

http://java.sun.com/products/servlet/overview.html 
[25] Open source database MySQL. http://www.mysql.com/why-mysql/ 
[26] Apache Tomcat. http://tomcat.apache.org/ 
[27] NetBeans IDE. http://netbeans.org/features/  
[28] Ian Foster. “Globus Toolkit Version 4: Software for Service-Oriented 

Systems”, Journal of Computer Science and Technology,vol. 21, no.4, 
pp. 513-520, Jul. 2006. 

[29] D. Booth, H. Haas, F. McCabe et. al., “Web Services Architecture,” 
W3C Working Group Note, 2004. http://www.w3.org/TR/ws-arch/ 

[30] TeraGrid. http://www.teragrid.org/about/ 
[31] Open Science Grid. http://www.opensciencegrid.org/ 
[32] Large Hadron Collider (LHC) Computing Grid. 

http://public.web.cern.ch/public/en/lhc/Computing-en.html 
[33] Java Jini Technology. http://www.jini.org/wiki/ 
[34] JavaSpaces. http://www.jini.org/wiki/JavaSpaces_Specification 
[35] Simple Object Access Protocol  (SOAP). http://www.w3.org/TR/soap/ 
[36] M. Abramovici, M.A.Breuer and A.D. Friedma, Digital systems testing 

and testable design. IEEE Press, 1990 
 

Eero Ivask has received his M.Sc. and Ph.D. degrees 
in computer engineering from Tallinn University of 
Technology, Estonia in 1998 and 2006 respectively 
and currently holds the position of researcher in the 
same university. His primary research interests 
include fault simulation, test generation, web based 
systems, distributed computing. He is a co-author of 
more than 30 scientific papers in international 
conference proceedings. 
 

 
Sergei Devadze has received his M.Sc. and Ph.D. 
degrees in computer engineering from Tallinn 
University of Technology, Estonia in 2004 and 2009 
respectively and currently holds the position of 
researcher in this university. His primary research 
interests embrace such topics as fault simulation, fault 
modeling, extended board-level test, decision 
diagrams and decomposition of finite-state machines. 
He is a co-author of over 25 scientific papers in the 
field of digital design and test published in 

international journals and refereed conference proceedings. 
 
 

Raimund Ubar is a professor of computer 
engineering at Tallinn Technical University in 
Estonia. He received his PhD degree in 1971 at the 
Bauman Technical University in Moscow. His main 
research interests include computer science, 
electronics design, test generation, design for 
testability, fault-tolerance. He has published more 
than 300 papers and 4 books. R. Ubar has lectured as 
a visiting professor in more than 25 universities in 10 
countries. He is a member of Estonian Academy of 
Sciences and a Golden Core member of the IEEE 
Computer Society. 

 

 

�%^ ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����


