
�Abstract—Distributed computing attempts to aggregate
different computing resources available in enterprises and in the
Internet for computation intensive applications in a transparent
and scalable way. Fault simulation used in digital design flow for
test quality evaluation can require a lot of processor and memory
resources. To speed up simulation and to overcome the problem
of memory limits in the case of very large circuits, a method of
model partitioning and the procedure of parallel reasoning for
several distributed simulation agents was proposed. The concept
and implementation of web-based distributed system was
introduced.

Index Terms—distributed computing; fault simulation; critical
path tracing; digital test

I. INTRODUCTION
AULT simulation is a central task used in the digital
design process in order to estimate the quality of tests

prepared for digital electronic device. In addition, the
procedure of fault simulation is often required for other test-
oriented tasks such as fault diagnosis, automatic test pattern
generation (ATPG), test compaction, design of reliable
systems and others. For certain tasks (ATPG, built-in self test
optimization, etc), the intermediate step of fault simulation
need to be carried out many times hence making the
simulation speed be key issue in the acceleration of the overall
task performance.

Today, complexity of integrated circuits is still increasing
according to Moore’s law, which states that transistor density
doubles about every two years. This trend is predicted to
continue at least for another decade, posing serious testing
problems. One approach to cope with the problem is to
improve the fault analysis algorithms towards better
scalability. However, the abundance of different fault
simulation methods proposed during the last decades leaves
almost no room for further improvement. Another way to gain
practical speedup is to parallelize the task execution. There are
several possibilities: algorithm can be parallelized, circuit
model can be partitioned into separate components and
simulated concurrently, fault set or test pattern set can be
divided and simulated in parallel.

Several parallel processing algorithms have been proposed
to speed up fault simulation [1]. The techniques that use fault

This work was supported by Estonian SF grants 7068, 7483, EC FP7 IST
project DIAMOND, ELIKO Development Centre and European Union
through the European Regional Development Fund (Research Centre CEBE).

Authors are with Department of Computer Engineering Tallinn University
of Technology Tallinn, Estonia, email: {ieero, serega, raiub}@pld.ttu.ee

partitioning is one reasonable way to decrease simulation time
Another approach, also able to accelerate fault simulation,
relies on test vectors partitioning. Combining fault parallelism
with vector parallelism has been proved to be even more
effective: easy-to-detect faults are identified with fast
preprocessing and simulated in parallel among processors,
remaining faults are targeted by all processors, each using
only subset of test vectors corresponding to its partition [2].

Circuit partitioning has got less attention, as its speedup has
been relatively small so far. Parallel fault simulation with
circuit partitioning was used in [3,4] for vector-synchronous
implementations on message passing multiprocessor systems.
Circuit partitioning approach for shared memory systems was
presented in [5]. The method in [6] distributes the component
models of the circuit partitions to unique processors of a
parallel processor system for concurrent and asynchronous
execution. Partitioning issues are not handled here, however
manual partitioning is supported.

Less effort has been spent in the area of algorithmic
parallelism. For instance, the pipelined approach in which the
specific simulation functions are assigned to different
processors is given in [7,8]. The latter solution has been
shown more effective than circuit partitioning. Recent
attempts in the field are aimed to avoid redundant work by
judicious task decomposition [1]. In addition, it adopts a
cyclic fault partitioning method based on the LOG [9]
partitioning and local redistribution, resulting in a well-
balanced load distribution.

Recently, new trend has been the use of graphics processing
units for general purpose computing by exploiting thread level
parallelism. Fault simulation approach using faults and vectors
partitioning is proposed in [20].

Current paper presents distributed loosely coupled
asynchronous Internet-based fault simulation approach, which
relies on model parallelism and test parallelism. Fault
detectability computational model for the circuit is divided
and at the same time, also test pattern set is divided. Sub-sets
of test are evaluated on partial computational models
concurrently on different computers in wide or local area
network. Our approach has no specific fault list, instead faults
reside in simulation model. During model partitioning some
overlaping occurs as we want to avoid interdependences,
because of the communication lags. Therefore these repetitive
model parts are obviously simulated several times. In fault

Distributed Approach for Parallel Exact Critical
Path Tracing Fault Simulation

Eero Ivask, Sergei Devadze, and Raimund Ubar

F

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ���

�������	
 � �
�
 �� �����
���
 �� ���������
������ � �����
�� �������� ���	����� ��� ����
� �� !�"#

coverage point of view this does not interfere – results will be
accumulated. This only results in some speed penalty, but this
will be offset by gain in memory reduction. Distributed
approach can aggregate more computational resources having
a potential to ease the large circuits fault simulation problem.

The presented fault analysis algorithm is based on well-
known critical path tracing (CPT) technique [10]. Traditional
CPT consists of simulating the fault-free circuit and uses the
computed signal values for backtracking all sensitized paths
from primary outputs to primary inputs in order to determine
the detected faults. The trace continues until the paths become
non-sensitive or end at network primary inputs. Faults on the
sensitive (critical) paths are detected by the test.

Although by using CPT one can process all the faults by a
single run for many test patterns in parallel, conventional CPT
approach gives the exact results only for circuits without
reconvergent fanouts. A modified CPT technique that is linear
time, exact, and complete is proposed in [11]. However, the
rule based strategy does not allow simultaneous parallel
analysis of many patterns.

Parallel critical path tracing in fanout-free regions (FFR)
combined with parallel simulation of stem faults was
investigated in [12]. In [13] the concept of parallel critical
path tracing was generalized for using it beyond FFRs. In
addition, circuit in [13] is modeled by network of macros
instead of network gates providing higher level of abstraction
(hence higher simulation speed) but preserving gate-level fault
modeling accuracy. To describe circuit on macro-level special
class of binary decision diagrams called structurally
synthesized BDDs [14] is used.

Current distributed framework was initially inspired from
MOSCITO system [16], intended for local tools in LAN
mainly. Major obstacle for Internet based use was TCP/IP
socket based communication, which conflicted with firewalls.
More flexible web-based solution for remote tool usage was
proposed in [17]. In current paper this concept is revised and
improved to support distributed fault simulation.

There exist also several general purpose frameworks for
distributed computing like BOINC [18], Globus [28], and
AliCE [19] for example. By far, most popular is BOINC
(Berkeley Open Infrastructure for Network Computing), a
non-commercial middleware system for volunteer computing,
originally developed to support the SETI@home project, but
intended to be useful for other applications in areas as diverse
as mathematics, medicine, molecular biology, climatology,
and astrophysics. The intent of BOINC is to make it possible
for researchers to tap into the enormous processing power of
personal computers around the world.

A major part of BOINC is the backend server. The server
can be run on one or many machines to allow BOINC to be
scalable for projects of any size. BOINC servers run on Linux
based computers and use Apache, PHP, and MySQL as a basis
for its web and database systems. Framework uses cross-
platform WxWidgets toolkit for building GUI-s.

BOINC is the infrastructure which downloads distributed
applications and input data (work units), manages scheduling

of multiple BOINC projects on the same CPU, and provides a
user interface to the integrated system.

Scientific computations are run on participants' computers
and results are analyzed after they are uploaded from the user
PC to a science investigator's database and validated by the
backend server. The validation process involves running all
tasks on multiple contributor PCs and comparing the results.

Major drawback of the BOINC infrastructure is the use of
remote procedure call (RPC) mechanisms which is often felt
to be security risk, because they can be the route by which
hackers can intrude upon targeted computers (even if it's
configured for connections from the same computer). Another
disadvantage is that BOINC servers are not simple to deploy
as they are based mainly on a large number of PHP scripts and
project is poorly documented which makes creating a new
BOINC project not easy. Use of PHP over Java can not
considered as an advantage.

Globus is a collection of libraries and programs that
address common problems that occur when building
distributed services and applications. Issues relating to
security, resource access, management, discovery, data
transfer, service deployment, system components monitoring
and user control are handled. Globus toolkit makes extensive
use of Web Services [29] to implement these infrastructure
services. A Web service is a software system designed to
support interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its
description using Simple Object Access Protocol (SOAP [35])
messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related
standards [29]. Initially, work on Globus was motivated by
demand of virtual organizations in science, then business
applications became also important. Now, Globus is deployed
in many large projects like TeraGrid [30], Open Science
Grid [31], LHC Computing Grid [32], etc. Globus services are
used to support different communities, each of which then
executes their own application specific code on top of those
services. Disadvantage of Web service based solutions is their
reliance on XML markup notation- nicely readable to human
being and easy to parse for computer programs, but it requires
more processing power and network bandwidth.

AliCE, developed in National University of Singapore,
attempted to become grid development system instead of just
being collection of grid tools. Similarly to Globus, AliCE core
layer has components for resource management, discovery,
and allocation, data management, monitoring and accounting,
communication and security infrastructure. On top of that
comes extensions layer consisting distributed-shared memory
programming templates, runtime support infra–structure and
advanced data services. Running system has consumer,
producer and resource broker entities. Consumer submits
application code to grid, resource broker directs the
application to appropriate task farm manager which initiates
the application and creates a pool of tasks. Task references are

��� ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����

returned to the resource broker, which schedules the tasks for
execution on producers. Results are returned to the consumer.
Communication supports the migration of codes, data and
results via “Space”– a special form of shared memory.
Communication is carried out with objects. Objects and code
are serialised and packed into jar archive fail. AliCE is based
on Java Jini technology [33] and JavaSpaces [34]. Java Native
Interface (JNI) is used to invoke non-Java code. Authors have
used the system in several projects, but it seems that activity
around AliCE has lost its momentum at present. Reasons are
not clear, since technology itself is still promising. Only
drawback in our point of view is that Jini technology is based
on Remote Method Invocation (RMI)- although elegant
programming solution for distributed computing, were one
program can remotely invoke methods physically residing in
other machine, however, firewall traversal can be problematic
as dedicated communication ports are needed. Strict security
policy might not allow that.

 The rest of the paper is organized as follows. Section II
gives theoretical explanation of the presented fault simulation
algorithm and describes the procedure of construction of
computational model. The approach for computational model
partitioning is given in Section III. Section IV presents web-
based infrastructure for distributed simulation. Experimental
results are discussed in Section V and finally conclusions
about the presented method are drawn in Section VI.

II. FAULT SIMULATION ALGORITHM
The overall goal of fault simulation is to evaluate the

behavior of a circuit in case of presence of faults inside it. In
particular, fault simulation has to determine whether the
output response of a circuit is changing due to the influence of
a fault or not. A fault which effect propagates to primary
outputs under current input stimulus is referred as detected by
the current test pattern.

Fault simulator typically works with a specific fault model.
In this paper we will consider fault simulation algorithm that
works with single stuck-at fault model (SAF). The presence of
stuck-at fault in a digital circuit permanently fixes the value of
corresponded signal line to logic one (stuck-at 1) or logic zero
(stuck-at 0). The single stuck-at model that is commonly used
in practice permits only sole stuck-at fault to present in a
circuit at a time.

The input data of fault simulator is a set of test patterns
together with the model of a circuit. In general case, the result
of the execution of fault simulator is a fault table that shows
what of the modeled faults are detectable by each of the given
test patterns.

A. Theoretical background
Let us consider combinational circuit as a network of

blocks where single block represents a subnetwork of gates
with single output. Then, a fanout-free region (FFR) of
combinational circuit is a block that does not contain
reconverging fanout stems (i.e. represents a tree-like
subcircuit). Since the traditional critical path tracing technique

in FFR [10] is independent of the region size, we will consider
in the following the combinational circuits as networks of
FFRs with maximum size.

In [36] it has been shown that the set of faults on primary
inputs and the faults at the fanout branches of a combinational
circuit is the representative set of collapsed faults that has to
be tested. Therefore, it is enough to consider only the faults
that reside on inputs of FFR blocks in order to carry out
complete fault simulation for an arbitrary circuit.

Consider a fanout-free region represented by a Boolean
function y = F(x1,…, xi, xj, … xn). The task of fault simulation
can be reduced to calculation of Boolean derivatives: if
�y/�xj = 1 then the fault is propagated from xj to y. This check
can be performed in parallel for a set of test patterns. In order
to extend the parallel critical path tracing beyond the fanout-
free regions we use the concept of partial Boolean
differentials.

Consider a fan-in subcircuit F of the converging fanout region
depicted in Fig. 1, and represented by a function y = F(x1, …,
xi, xj, … xn). Each input of function F corresponds either to
input without fanout or to branch of fanout input.

Assume that the inputs x1,…,xi of the subcircuit F are
connected to the fanout stem z via subcircuits without
reconvergencies and represented by functions x1 = f1(z,X1),
…, xi = fi(z,Xi), where Xi are vectors of variables. Then all
possible fault propagation conditions for the circuit in Fig. 1
can be represented by the full Boolean differential:

�
))(),...,(

),(),...,((11

nnjj

ii

dxxdxx
dxxdxxFydFdy

��
�����

� ����

By the Boolean variable dx we denote the erroneous change
of the value of x because of a propagated fault. In [13] we
have shown that if a SAF is detected by a test pattern at y then
the fault at the fanout stem z which converges in y at the
inputs x1, …, xi, is also detected iff

� 1),...,),(),...,((1
1 �

�
�

�
�
�

���
�
�

nj
i

i xx
z
xx

z
xxFy

z
y � �	��

From (2), a method results for generalizing the parallel
exact critical path tracing beyond the fanout-free regions. All
the calculations in (2) can be carried out in parallel since they
are Boolean operations.

In a general case of nested reconvergencies the formula (2)
can be used recursively. If a stuck-at fault is detected by a test
pattern on the output y of a subcircuit in Fig. 2 with two

F
xn

 fi(z, Xi)

x1

xi

z

y
xj

X1

Xi

 f1(z, X1)

. .

. .
..

Figure 1. Reconvergent FFR in a circuit

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��%

nested reconvergencies, y = Fy(x1,z,Xy) and z = Fz(x,Xz), where
Xy and Xz are not depending on x, then the fault at the
common reconverging fanout stem is also detected iff

�),,(1
1 yzxyx XFdz

x
xxFyyd �

�
�

��� ��� �
��

Fy
Fz

x

Xz

z

Xy

y
x1

Figure 2. Nested reconvergencies in a circuit

The formula (3) can be used for calculating the influence of
the fault at the common fanout stem x on the output y
of the converging fanout region by calculation of partial
Boolean differentials, first dxFz, and then dxy. The formula (3)
can be iteratively generalized for arbitrary configuration
of nested reconvergencies by topological analysis of the
circuit. On the other hand the derived full Boolean
differentials can be easily transformed into fast computable
critical path tracing procedures to be carried out in parallel for
sets of test patterns.

The described exact parallel path tracing fault analysis is
carried out in the following sessions:
� topological pre-analysis to create topology graph of

source circuit
� construction of computational model of the circuit that

consist of Boolean formulas for critical path tracing
beyond FFRs.

� parallel fault backtracing on the created computational
model

The topological pre-analysis and construction of
computational model are performed only once to serve all the
next sessions of the procedure.

B. Topological pre-analysis
The first procedure of the topological analysis is carried out

in the direction from primary inputs to primary outputs of the
circuit. By this procedure, all the fanout stems and all the
reconvergent fan-in nodes of the circuit will be found. As the
result of the procedure, a graph G = (N, U) is created which
represents a skeleton of the circuit. Let N be the set of nodes
in G that represent either outputs of the gates with fanout
branches or the outputs of fan-in gates where at least two
paths from the same fanout stem converge.

Each edge (x,y)�U between two neighbour nodes x and y in
the graph G represents a signal path in the circuit through the
gates without fanouts and without fan-ins with reconvergencies.
The subscripts at the node variables are introduced to
distinguish the branches of the fanout nodes. The node label is
interpreted as the signal variable of the corresponding gate:
the variable x represents the output of a gate, and the variable
xj represents the j-th branch of the gate’s fanout.

Denote by RO
 N the subset of all fan-out nodes which

reconverge and by RI
 N the subset of all reconvergent fan-
in nodes. To each x � RO we refer the set of nodes RI(x)
 RI,
so that for each y � RI(x) there exist at least two different
converging paths from x to y.

Consider in Fig. 3 a reconvergency graph which represents a
topological skeleton of a circuit with primary outputs {A,B,C}.

During the topological analysis, all the paths in the circuit
are traced, and the found reconvergencies are fixed in the
form of subsets:

RO = {1,2,3,4,5,6},
RI = {4,A,B,C,D,E,F,G},
RI(1) = {A,D,F}, RI(2) = {B},
RI(3) = {E, B,C}, RI(4) = {D},
RI(5) = {B}, RI(6) = {C}.

Before creating a joint calculation model of the whole
circuit for fault tracing purposes, the next step is to build an
ordered set N* of all the nodes in G. For reconvergency graph
in Fig. 3 the following ordered set of nodes is constructed:

N* = (A,B,C,D,E,F,G,6,5,4,3,2,1).

C. Model creation procedure
Each edge (xj,y) in the reconvergency graph G corresponds

to a signal path in the circuit. Let us denote by the pair XY the
formula of the Boolean derivative �y/�x. In this case, �y/�x =
1 iff flip of signal at x will also produce change at y. Thus the
ultimate goal of the procedure of construction of calculation
model is to build the formulas for calculation of �y/�x for
every node x in graph G and for each y that belongs to set of
nodes representing primary outputs. Although the complete
procedure of construction is described in [13] we will
highlight the basic principles of the algorithm.

To calculate dependency of output of FFR block to its input
the critical path tracing procedure in a reconvergent fanout is
applied [12]. The latter corresponds to calculation of Boolean
derivative �y/�xi where xi is the i-th input of FFR with output
y. For this case the formula xjy is constructed where j is the
index of the respective fanout branch which corresponds to
the input xi (in case if node X does not belong to the set RO
this index can be omitted).

For instance, critical path tracing inside FFR could be used
for calculating the dependency of output block A on the fault
located at the first branch of fanout node 1 (see Fig. 3). For
this purpose, we create the respective formula 11A and put it
into computation model.

Figure 3. Reconvergency graph of a circuit

A

C
E

4

6

1

3

B
5

2
D

F

G

1

2

3

1

2

1 1

2

2

1

2

1

2
2

1

2

1

��& ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����

For Boolean derivative �y/�z where the path between z and
y consists of a simple chain of gates without reconvergencies
we can build for the path a formula zy by the chain rule using
logic AND operation of Boolean derivatives of the gates on
the path:

�
ii

i

i x
y

z
x

z
y

�
�

�
�
�

�
�
� � ����

Here, zi corresponds to i-th branch of fanout z that forms
path to y. As an example, we can use this procedure
to calculate the dependency of output of node B to the fault
on output of node F (see Fig. 3) by construction of the
following formula:

FB = F1D � D2B

If two nodes z and y form a reconvergency, we use the
formula obtained in [13]:

�),...,),(),...,((
1

1
1 nj

i

i
i xx

z
xx

z
xxFy

z
y

�
�

�
�
�

���
�
� � ����

The subformulas �xi/�zi in (5) are created step by step
during path tracing. These formulas are used also for
calculating the detectabilities of faults on the corresponding
paths. We can calculate now for the given path (z,y) �xi/�zi as
a part of the formula (5), and then update the result according
to (4) to get the values of �y/�zi. In such a way we achieve in
critical path tracing two goals: we calculate the activation of
the faults on the paths up to the output of the gate with
reconvergency, and up to the inputs of the same gate to be
able to take into account the reconvergency effect.

In the case of the nested reconvergencies, we take them into
account by superpositioning formulas (3) as shown in [13].
This operation follows also automatically during the
backtracing analysis of the circuit.

Table I presents a part of computational model constructed
for graph G in Fig 1. The formulas were created for nodes in
the order of N* shown in the column “Node”. The formulas ziy
and zy denote the derivatives �y/�zi and �y/�z, respectively.
The notation Rzy(z1y,...,ziy) is introduced to denote the formula
(5), where the parameters zjy represent the derivatives �y/�zi,
and i is the number of input of the gate y where the paths
from fanout z reconverge at y along j-th fanout branch. The
last rows of the table contain the formulas that unite the results
of calculation of detectability of fanouts for all of primary
outputs. For instance, the detectability of fault at node D can
be expressed as a union of dependabilites of primary output A
and B on signal flip at fanout D.

After creating the computational model, we proceed to the
test pattern simulation phase. First, a subset of test patterns is
simulated in parallel to determine the fault-free values of all
signal lines in circuit. Second, based on these values and using
the formulas in the computational model we determine which
SAF faults are detected by this subset of test patterns.

TABLE I. COMPUTATIONAL MODEL FOR GRAPH G

Node P Formulas # Node P Formulas
1 A 1 11A 22 F 1 12D=12F�F1D
2 A 1 D1A 23 F 1 41D=41F�F1D
3 B * D2B 24 G 1 42G
4 B 1 22B 25 G 2 51G
5 B 2 E1B 26 G 1 42D=42G�G1D
6 C 2 E2C 27 G 2 51A=51G �G1A
7 C 2 62C 28 G 2 51B=51G �G1B
8 D 1 F1D 29 6 2 613
9 D 1 G1D 30 6 2 R6C(61C, 62C)
10 D 1 F1A=F1D�D1A 31 5 2 315
11 D 1 F1B=F1D�D2B 32 5 2 5B=R5B(51B,52B)
12 D * G1A=G1D�D1A 33 4 1 134
13 D * G1B=G1D�D2B 34 4 1 214
14 E 2 52E 35 4 1 R4D(41D, 42D)
15 E 2 61E 36 4 1 4A=R4D�D1A
16 E 2 52B=52E�E1B 37 4 1 4B=R4D�D2B
17 E 2 52C=52E�E2C …
18 E 2 61B=61E�E1B D 1 D = D1A � D2B
19 E 2 61C=61E�E2C E 2 E = E1B � E2C
20 F 1 12F F 1 F = F1A � F2B
21 F 1 41F …

III. MODEL PARTITIONING
The computational model constructed in the previous

section allows to carry out fast efficient fault simulation of a
circuit minimizing the number of repeated computations. The
experimental results presented in Section V show that the
proposed fault simulation method outperforms several
commercial and academic tools. Nevertheless, the speed of
simulation of very large designs on a single computer can be
unacceptably slow even in case of efficient algorithms. In
addition, the proposed technique requires certain amount of
memory for storing the formulas used in the model. Again, for
large circuits this requirement can exceed the amount of
available memory. In the last case, the fault simulation cannot
be performed for such circuit or the efficiency of fault
simulator is extremely decreased.

To overcome these problems the method of splitting of
computational model is proposed. By using the proposed
approach it is possible to split the process fault simulation into
a number of parallel sub-processes. Then for each sub-
process, a partial computational model is constructed and the
separate simulation procedure is run. Moreover, it can be
easily seen, that such method gives an opportunity to use
distributed environment for achieving higher simulation
speed. Although, possible overlap between partial calculations
may introduce certain costs, the overall performance of
distributed simulation will overcome the speed of fault
analysis on a single machine.

Let us define the set PI that is formed out of the nodes in G
that are directly connected to primary inputs. Then �(PI)
denotes a partition of original set PI into non-overlapping
subsets and Bi denotes an ith subset of �. Then, G’i(N’, U’) is a
subgraph of the graph G(N, U) for which N’
N and, x�N’
only if there is a signal path from one of the primary inputs of
Bi to x. Let us call G’ as partital reconvergency graph. Then
for each of the partial reconvergency graphs a separate

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��;

computational model is constructed and fault simulation is
carried separately for each corresponding part of circuit.

For the reconvergency graph in Fig. 3 we have set
PI = {1,2,3}. Let us define the partition � on the set PI as:

};,{ 321 iii�� . The partial reconvergency graphs G1 and G2
are presented in Fig 4. The formulas belonging to the partial
calculation model that corresponds to G1 are marked by “1” in
the columns “P” of Table I whereas formulas that correspond
to G2 are marked as “2” (“*” means that formula belongs to
both models). Note that overlap is very likely to occur
between formulas of partial computational models (see Table I).

Obviously, the effectiveness of the proposed method
strongly depends on the initial partition of input nodes. As for
the current implementation, no analysis is conducted to find
the optimal selection of partition � for minimizing the size of
overlapped area. Instead of that, � is selected randomly taking
into account only the amount of available memory. For this
purpose the algorithm that uses internal memory counter for
keeping the currently allocated memory size stops the
construction of partial calculation model when the maximally
allowed amount of allocated memory is reached. The full
description of algorithm is presented in [14].

IV. DISTRIBUTED SIMULATION ENVIRONMENT
Our web-based infrastructure is built according to the

client-server three-tier concept. There is a master server,
several application servers and arbitrary number of
users (Fig. 5). Master has a role of the mediator, it interacts
both with users and simulation agents. Users and agents work
in “polling” mode, whereas master is working in “answering”
mode. Users can communicate with master only. Simulation
agents reside on application servers. Agent consists of
software layer wrapping the simulator tool and providing
network communication abilities. On a request, agents will
start instances of the simulator tool. Each user has own
workspace in the server-side database, but large files are
stored directly in file system for performance reasons – in the
database only references to the file location are maintained.

At first, master server and agents must be started by system
administrators. Invocation of the agents can be automated by
use of system start-up scripts. Thereafter, users can submit
tasks which are passed initially to the master and stored there
until an idle agent will ask for a new task. When task is

complete, agent passes the fault simulation results back to
master, who assembles the partial fault tables, calculates the
total fault coverage and stores the data. Results are delivered
to user later when requested.

System components can be executed on different computing
platforms, however the simulator instances must run on their
native platform. Master servlet usually resides separately from
agents. Moreover, master and agents can be located in
different LANs. Firewall traversal is no problem as only one
web server port must be configured on Master server.

A. Implementation
Web-based infrastructure is built on Java Applet/Servlet

technology [24] and popular platform independent open
source relational database MySQL[25]. Communication flow
between system components and implementation details can
be seen in Fig. 5. Servlet is a Java application that runs in a
Web server or special application server and provides server
side processing like different calculations, database access, e-
commerce transactions, etc. Servlets are designed to handle
HTTP requests and are the standard Java replacement for a
variety of other methods, including CGI scripts, Active Server
Pages (ASPs) and proprietary C/C++ plug-ins for specific
Web servers (ISAPI). Because servlets are written in Java,
they are portable between servers and operating systems. The
servlet programming interface (Java Servlet API) is a standard
part of the Java EE (Enterprise Edition of Java), the industry
standard for enterprise Java computing. Tomcat[26] is open
source servlet container (application server software) which is
one way to run Java Servlets. Tomcat is developed by the
Apache Software Foundation (ASF) and implements the Java
Servlet and the JavaServer Pages (JSP) specifications from
Sun Microsystems, and provides a pure Java HTTP web
server environment to run a Java code.

 In conclusion, Tomcat and servlets running on it play
important role in order to access our intranet resources on
application servers and the MySQL database. It is simple and
light weight alternative to other full blown enterprise scale
solutions.

Tool encapsulation
Our simulator is implemented in C language, it has no

graphical interface and network communication abilities. In
order to integrate it into web based environment, it is
necessary to implement additional software (wrapper) layer.
Simulator will be invoked from Java program (Agent), which
allows to adapt the input data, convert the tool-specific data,

Figure 4. Partial reconvergency graphs G1 and G2

A

4

1

B 2
D

F

G

C

E6
3 B5

DG
A

Figure 5. System components and communication

Master Server

Coordination

MySql
Tomcat

Servlet

App. Server
 Service

Agent

Simulator

 User
Applet

�%� ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����

simulation results (log files, test vectors, etc), map the control
information to the embedded tool, transfer and pass the status
information (warning and error messages) to be submitted to
the user, etc. Technically simplest way is to encapsulate a tool
as an entire program. Tool has to be able to run as a batch job.
Integration of other tools is then also possible similar way.
Also embedding of a library (e.g. C, C++ routines) via the
Java Native Interface (JNI) could be promising and also direct
integration of Java-classes and applications (especially for
Java software).

Data management
Data handling takes place in coordinator servlet. Problem is

that web-based HTTP communication is stateless and session
is valid for short time only, but simulation process may run
much longer. Therefore, users must be identified, their tasks
and results must be stored for later access.

Data module has three layers: presentation (user interface),
business-logic (database queries, data processing) and physi-
cal database. First two layers are implemented in Java. User is
accessing database only via presentation layer, which consists
of several functions to run middle layer queries. Database
access is implemented according to Data Access Object
(DAO) design practice. Data access objects manage access to
relational databases. For each table in a relational database
there corresponds one Java class. Database table attributes
map to Java class properties. For each property, there exist
‘set’ and ‘get’ methods. Additionally, DAO class has methods
to insert, update and query the records in the database tables.
For example, for table “Tasks”, we will have at least
properties like ‘taskId’, ‘userId’ and ‘status’; methods could
be like ‘getTaskId’, ‘setStatus’, ‘insertTask’,
‘getCompletedTask’, etc. Standard Java mechanism for
accessing databases is using Java Database Connectivity
(JDBC) API. For convenience purposes, we have captured
basic DB connection code into single DB access class and
every specific DAO class, like ‘TasksDAO’ class, extends that
class – i.e. basic connection methods are inherited and used
inside the class.

 Alternatively, it could be possible to use popular
Hibernate [21] and Spring [22] frameworks to simplify objects
to relational DB mapping (ORM). For large and mission
critical projects also Java EE technology like Enterprise
JavaBeans is available[23]. However, for simple data
persistency in current situation, proposed solution is adequate
and was faster to implement. Setting up and closing DB
connections is time consuming operation, therefore we have
used Tomcat’s native connection pooling to speed up DB
transactions.

Communication
Use of applet/servlet approach means that general

communication is based on HTTP protocol. The tools on
different computers and on different computing platforms
(UNIX, Linux, Windows) can easily exchange data as
serialized Java objects. Data passing between components is
implemented following Transfer Object (TO) design practice.

Transfer object is a lightweight version of DAO object, it has
only properties and ‘get’ and ‘set’ methods. Information is
sent as data bundle as opposed to single strings.

HTTP protocol allows us also easy firewall traversal as we
can use default web server port and Java servlet extensions on
web servers as sort of proxies in order to reach intranet
resources. There is no need for opening extra ports in the
firewall on the user side as it is the case in TCP/IP socket
based communication or when relying on Java RMI (which
would be major restriction). Communication can be secured
via SSL encryption by appropriate modifications in Tomcat
configuration file, when necessary.

Graphical User interface
User interface (GUI) is based on Java Applet, which can be

integrated into HTML page when needed. Java applets are
very versatile in features and easy to develop. For rapid
prototyping we have used NetBeans IDE[27], which supports
visualised GUI development with drag and drop operations.
Final tweeks to generated code still had to be done manually.

User GUI has fields to gather test tool’s parameters, allows
browsing for circuit model file, has button to start the tool, a
console window to display all the messages from the running
tool. When the task is complete, results download is enabled.
User can browse and select the folder where to save results.
Since local hard drive access for usual Java applets is
restricted for security reasons, then GUI applet had to be
signed digitally. We used so called self-signed certificate for
simplicity. Certificate shows owner specific information. Only
difference for end user is that when signed Applet is first time
downloaded into user’s computer, informative dialog box is
displayed. It is user’s responsibility to trust or untrust the
origin and contents of the Applet. User can contact Applet
owner about authenticity of certificate, when question arises.
User needs the Java Runtime Environment (JRE) to run GUI.

B. Workflow of distributed simulation
At first, user specifies the parameters and source design for

the simulation tool (see Fig. 5). In addition, the size of the
simulation task can be predefined. Thereafter GUI module
contacts with master server and circuit along with the
parameters are passed to it automatically. The task coordinator
process on master records all requests from user(s) to the DB.
Test agents poll constantly the Master and if any of subtasks is
scheduled by coordinator process, the agents receive the
corresponding parameters and circuit file along the test
patterns for starting native simulator tool.

In the beginning, simulator constructs calculation model
taking into account the memory limit of the subtask. While
reaching the limit, the simulator saves the breakpoint
information into local file system. Simulation agent reads the
breakpoint information and passes it to the Master server
where it will be stored for other simulation agents. When next
idle agent is polling, it will get the circuit model along with
parameters and breakpoint information. The new instance of
simulator started by the agent, constructs calculation model
starting from the breakpoint hence, the updated breakpoint

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �%�

information will be saved and passed to Master server by the
agent. Simulator agents wait until their subtasks will be
completed and report results back to Master server.

The process repeats until there are no subtasks left. Note
that simulators need to be started subsequently but after that
they run concurrently (the starting delay is small compared to
runtime). However, finishing order of simulators may not be
the same as starting order as simulation speed depends on the
piece of the calculation model: some parts are more difficult to
simulate. After all simulators are finished, the Master server
assembles sub-results into the final result and stores it in the
database. Then final result is passed to user when requested.

For each simulator there is a dedicated agent that must
reside on the same computer. In case of multiprocessor
computer, it is possible to run several agents and simulators
concurrently on the single computer. Simulation agent will
accept only one task at time. It is reasonable to have one agent
for each processor because operating system typically assigns
running tasks to available processors.

V. EXPERIMENTAL RESULTS
Table II presents the single processor fault simulation

results for the large circuits of three benchmark sets:
ISCAS’85 and combinational versions of ISCAS’89 and
ITC’99 (column 1). The second column shows the size of
each circuit (number of equivalent 2-input gates). Following
columns present the simulation results for various fault
simulators: the approach described in [11] (column 3), two
commercial fault simulators from major CAD vendors C1 and
C2 and the proposed method (column 6). The last row shows
the average speed gain in comparison with other methods.

TABLE II. SIMULATION RESULTS (NO MODEL PARTITIONING)

Circuit Fault simulation time, s

Gates
[11] C1 C2 New

 c1908 618 640 12 2.97 0.36
 c2670 883 560 24 2.24 0.4
 c3540 1270 770 43 7.48 0.9
 c5315 2079 1270 57 5.55 0.76
 c7552 2632 1480 88 8.14 1.17
 s13207_C 3214 N/A 70 5.64 2.03
 s15850_C 3873 N/A 111 12.06 2.63
 s35932_C 12204 N/A 390 23.63 5.73
 s38417_C 9849 N/A 310 31.44 6.85
 s38584_C 13503 N/A 320 23.22 6.37
 b14 9150 N/A N/A 49.24 14.01
 b15 8877 N/A N/A 39.06 25.79
 b17 31008 N/A N/A 117.64 75.40
 b18 104580 N/A N/A 620 344.5
 b19 210585 N/A N/A 1353 750.1
Average speed gain 1393 53.3 4.4 1

The simulation was carried out for the sets of 10000
random patterns without usage of fault dropping (full fault
table constructed). The experiments were run on a 1500MHz
SUN UltraSparc IV+ server with Solaris 10 operating system,
except the experiments data taken from [11] that were
obtained on a 2.8GHz Pentium 4 under Windows XP.

TABLE III. ANALYSIS OF CIRCUITS STRUCTURE

Circuit Total
#fanouts

Max depth Fanouts for
input

Fanout %

 c1908 223 16 109 49
 c2670 290 16 115 40
 c3540 356 16 246 69
 c5315 510 16 138 27
 c7552 812 15 661 81
 s13207_C 1224 16 131 11
 s15850_C 1518 25 260 17
 s35932_C 5295 10 1324 25
 s38417_C 4569 16 233 5
 s38584_C 3946 19 253 6
 b14 2409 44 2023 84
 b15 2353 58 1392 59
 b17 8145 71 1518 19
 b18 31066 79 6406 21
 b19 63095 82 11541 18

Table III presents detailed characteristics of the circuits.
Column 3 shows maximal depth (in fanouts) for each circuit.
It can be seen that the maximal depth does not grow as fast as
the number of fanouts (thus circuits are growing more in
width dimension than in depth). Column 4 shows maximal
count of fanouts that are driven (immediately or indirectly) by
a single primary input thus roughly estimates the minimal size
of slice we can get when dividing the calculation model (by
current algorithm). This value also constraints the granularity
of divided parts and defines a minimal amount of memory
required for fault simulation. Again for many circuits the ratio
of minimal slice to total fanout count decreases with the
growing size of circuits (see last column). However there are
exceptions (e.g. b14 and b15 benchmarks).

In experiments with distributed solution we measured the
overall speed-up, memory reduction and communication
overhead in order to determine how well the current task
partitioning solution scales when the number of processing
units increases. Simulation was carried out on the same
UltraSPARC servers. Tomcat servlet engine and MySQL DB
were running on 2-core AMD Athlon 64 6000+ 3GHz
processor with 2GB memory. User applet was also executed
on the similar Athlon machine. Circuit loading takes about a
second for the input files on the user computer. File transfer to
the database and user notification takes about 6 seconds.
Thereafter, simulation agent receives files from Master server
with 4-5 seconds delay. The total communication delay was
approximately 12-16 seconds in case of distributed web-based
solution. The total communication overhead was about 1%
compared to single processor solution in case of largest
circuits. The overhead depends on the size of the circuit and
the number of test vectors simulated.

Distributed fault simulation results are presented in
Table IV. 100K test patterns were applied to each circuit. As
we can see, model build time for subtask (circuit slice) is very
small (0.1% for b18 circuit) compared to simulation time.
Final simulation time is dominated by the longest subtask
simulation time. We see that there is some deviation from
ideal mean time. This implies that model partitioning could be

�%� ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����

still improved - model slices could be more balanced in size.
This would lead to more equal and shorter simulation times
and user would get final result faster. However, the
possibilities of balancing the partitioning of the model depend
essentially on the circuit structure.

TABLE IV. DISTRIBUTED SIMULATION RESULTS

Circuit B17C B18C B21C B22C

 Max model partitions 13 8 12 13
 Max model build, s 0.24 1.83 0.32 0.37
 Max subtask simul., s 214 1534 146 195
 Subtask simul. deviation, % 21.0 24.4 15.7 5.5
 Model size reduction, x 4.1 2.8 2.5 2.6
 Speedup by model partition 3.2 6.4 2.5 2.9
 Speedup by test partition 10.3 7.9 8,7 10.0

The last rows of Table IV present simulation speed-up for
the simulation distributed on several processors compared to
single processor local simulation. Scalability in case of model
partitioning is degrading due to model pieces overlapping. For
the purpose of fair comparison, the speedup results in rows 6
and 7 are calculated for the same number of partitions (first
row in Table IV) for both types of partitioning. It is interesting
to see that in case of larger circuit b18 model partitioning
speedup is quite close to test partitioning speedup. Figure 6
shows that initially, up to 6 processors model partitioning has
an advantage compared to test partitioning. Integrated speedup
for circuit b18 compared to single processor local simulation
can be observed in figure 7. Using for example 8 processors
(2 processors for model partitioning dimension and 4
processors for test partitioning dimension) would lead 15.6
time integrated speedup which is considerably better than just
using model partitioning (4.1x) or test partitioning (7.9x).

Comparing simulation speed to GPU based solution in [20],
our approach would require 5 processors to get similar result
for b22 circuit (27599 gates, 32K vectors).

VI. CONCLUSIONS
Web-based distributed fault simulation approach has been

proposed in this paper. In contrast to existing solutions, we
have developed Internet based loosely coupled system, which
potentially allows seamlessly aggregate computers of
dislocated working groups into one powerful simulation
application. Model partitioning has been proved to be useful
as it allowed to speed up the simulation up to 6.4 times and at
the same time to reduce the required memory amount 2.8
times on 8 processors compared to single processor simulation
in case of the largest circuit b18. Model partitioning is able to
outperform the test partitioning when number of processors is
small. Further speedups (15.6 times for 8 processors, for
example) can be achieved by combining model and test set
partitioning. Model partitioning clearly helps to boost the
simulation speed. Our approach favors larger circuits. Design
pattern proposed in current paper can be easily used for other
distributed applications, only task partitioning is specific.

REFERENCES
[1] Han and Soo-Young Lee, “A Parallel Implementation of Fault

Simulation on a Cluster of Workstations,” in Proc. IEEE International
Symposium Parallel and Distributed Processing IPDPS, 2008

[2] E. M. Rudnick and J. H. Patel, “Overcoming the serial logic simulation
bottleneck in parallel fault simulation,” in Proc. 10th Int. Conf. VLSI
Design, 1997, pp. 495-501.

[3] R. B. Mueller-Thuns, D. G. Saab, R. F. Damiano,and J. A. Abraham,
“Portable parallel logic and fault simulation,” in Proc. Int. Conf. CAD,
1989, pp. 506-509.

[4] J. F. Nelson, “Deductive fault simulation on hypercube
multiprocessors,” in Proc. 9th ATT Conf. Electronic Testing, 1987.

[5] S. Patil, P. Banerjee, and J. Patel, “Parallel test generation for sequential
circuits on general purpose multiprocessors,” in Proc. 28th ACM/IEEE
Design Automation Conf., San Fransisco, CA, 1991.

[6] S. Ghosh, “NODIFS: A noval, distributed circuit partitioning based
algorithm for fault simulation of combinational and sequential digital
designs on loosely coupled parallel processors,” LEMS, Division of
Engineering, Brown University, Providence, RI, Tech. Rep., 1991.

[7] P. Agrawal and V. D. Agrawal, K. T. Cheng, and R. Tutundjian, “Fault
simulation in a pipelined multiprocessor system,” in Proc. Int. Test
Conf., 1989, pp. 727-734.

49,9 (1)
35,1 (2)

21,1 (4)

100K (1)

50K (2)
25K (4)

12,5K (8)

0,0
5,0

10,0
15,0

20,0

25,0

30,0

35,0

40,0

45,0

S
pe

ed
up

Model size, Mb
(#proc)

Tests
(#proc)

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0

1 2 4 8
processors

S
pe

ed
up

0,0

0,5

1,0

1,5

2,0

2,5

3,0

M
em

or
y

re
du

ct
io

n

Model part. Test part. Mem. Red.

Figure 6. Circuit b18 experimental results Figure 7. Integrated speedup for circuit b18

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �%Z

[8] S. Bose and P. Agrawal, “Concurrent fault simulation of logic gates and
memory blocks on message passing multicomputers,” in Proc. Design
Automation Conf., 1992, pp. 332-335.

[9] M. B. Amin and B. Vinnakota, "Data Parallel-Fault Simulation,"IEEE
Trans. VLSI Systems, vol. 7, no. 2, pp. 183-190, Jun. 1999.

[10] M. Abramovici, P.R. Menon and D.T. Miller, “Critical Path Tracing - an
Alternative to Fault Simulation,” in Proc. 20th Design Automation Conf.,
1983, pp. 214-220.

[11] L. Wu and D.M.H. Walker, “A Fast Algorithm for Critical Path Tracing
in VLSI”, in Proc. Int. Symp. Defect and Fault Tolerance in VLSI
Systems, 2005, pp.178-186.

[12] S. Devadze, J. Raik, A. Jutman and R. Ubar, “Fault Simulation with
Parallel Critical Path Tracing for Combinational Circuits Using
SSBDDs”, in Proc. 7th IEEE LATW Conf., 2006, pp.97-102.

[13] R. Ubar, S. Devadze, J. Raik and A. Jutman, “Parallel Fault Backtracing
for Calculation of Fault Coverage”, in Proc. 13th Asia and South Pacific
Design Automation Conference (ASPDAC), Korea, 2008, pp. 667-672.

[14] J.Raik and R.Ubar, “Feasibility of Structurally Synthesized BDD
Models for Test Generation,” in Proc. European Test Workshop,
Barcelona, 1998, pp. 145-146.

[15] S. Devadze, R. Ubar, J. Raik and A. Jutman, “Parallel Exact Critical
Path Tracing Fault Simulation with Reduced Memory Requirements,” in
Proc. 4th IEEE Int. Conf. Design & Technology of Integrated Systems in
Nanoscale Era, Cairo, Egypt, 2009.

[16] A. Schneider et. al. “Internet-based Collaborative Test Generation with
MOSCITO,” in Proc. DATE, Paris, France, 2002, pp. 221-226.

[17] E. Ivask, J. Raik, R. Ubar and A. Schneider, “WEB-Based Environment:
Remote Use of Digital Electronics Test Tools,” in Virtual Enterprises
and Collaborative Networks, Kluwer Academic Publishers, 2004, pp.
435-442.

[18] BOINC. http://boinc.berkeley.edu/
[19] Y.M. Teo and X. B. Wang, “AliCE: A Scalable Runtime Infrastructure

for High Performance Grid Computing,” in Proc. IFIP Int. Conf.
Network and Parallel Computing, Springer-Verlag Lecture notes in
Computer Science, Wuhan, China, October 2004.

[20] K. Gulati, S. P. Khatri, “Towards Acceleration of Fault Simulation using
Graphics Processing Units,” in Proc. DAC, Anaheim, California, 2008.

[21] C. Bauer and G. King,Hibernate in Action. Manning Publications, 2004
[22] C. Walls, Spring in Action, Third Edition. Manning Publications, 2011.
[23] D. Panda, R. Rahman and D. Lane, EJB 3 in Action. Manning

Publications, First Edition, 2007.
[24] Java Servlet Technology.

http://java.sun.com/products/servlet/overview.html
[25] Open source database MySQL. http://www.mysql.com/why-mysql/
[26] Apache Tomcat. http://tomcat.apache.org/
[27] NetBeans IDE. http://netbeans.org/features/
[28] Ian Foster. “Globus Toolkit Version 4: Software for Service-Oriented

Systems”, Journal of Computer Science and Technology,vol. 21, no.4,
pp. 513-520, Jul. 2006.

[29] D. Booth, H. Haas, F. McCabe et. al., “Web Services Architecture,”
W3C Working Group Note, 2004. http://www.w3.org/TR/ws-arch/

[30] TeraGrid. http://www.teragrid.org/about/
[31] Open Science Grid. http://www.opensciencegrid.org/
[32] Large Hadron Collider (LHC) Computing Grid.

http://public.web.cern.ch/public/en/lhc/Computing-en.html
[33] Java Jini Technology. http://www.jini.org/wiki/
[34] JavaSpaces. http://www.jini.org/wiki/JavaSpaces_Specification
[35] Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap/
[36] M. Abramovici, M.A.Breuer and A.D. Friedma, Digital systems testing

and testable design. IEEE Press, 1990

Eero Ivask has received his M.Sc. and Ph.D. degrees
in computer engineering from Tallinn University of
Technology, Estonia in 1998 and 2006 respectively
and currently holds the position of researcher in the
same university. His primary research interests
include fault simulation, test generation, web based
systems, distributed computing. He is a co-author of
more than 30 scientific papers in international
conference proceedings.

Sergei Devadze has received his M.Sc. and Ph.D.
degrees in computer engineering from Tallinn
University of Technology, Estonia in 2004 and 2009
respectively and currently holds the position of
researcher in this university. His primary research
interests embrace such topics as fault simulation, fault
modeling, extended board-level test, decision
diagrams and decomposition of finite-state machines.
He is a co-author of over 25 scientific papers in the
field of digital design and test published in

international journals and refereed conference proceedings.

Raimund Ubar is a professor of computer
engineering at Tallinn Technical University in
Estonia. He received his PhD degree in 1971 at the
Bauman Technical University in Moscow. His main
research interests include computer science,
electronics design, test generation, design for
testability, fault-tolerance. He has published more
than 300 papers and 4 books. R. Ubar has lectured as
a visiting professor in more than 25 universities in 10
countries. He is a member of Estonian Academy of
Sciences and a Golden Core member of the IEEE
Computer Society.

�%^ ����� �� ���� ������!���� �������" ��� ����		�	 �#��� �������	 ���" ������$ ���	� ��
�	�����

