PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of degradation processes in engineering materials using X-ray (micro)tomography and dedicated volumetric image processing and analysis

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This dissertation presents new experimental and computing methodologies to study different degradation processes in engineering materials. This has been done thanks to the unique use of X-ray tomography and the development of new image processing and analysis strategies. The work consists of four chapters. The first one introduces some of the most frequent degradation processes encountered in engineering materials. It also presents how X-ray tomography has become a competitive and unique tool to study non destructively and in three dimensions these phenomena in the past 10 years. This fact is illustrated in more detail by one example corresponding to the quantification of damage initiation and propagation in a model composite material. This material has been especially fabricated to satisfy the main requirements from X-ray tomography. This example is also used to stress the fact that, despite the uniqueness of the 3D information that is obtained from X-ray tomography, a large proportion of studies remain qualitative because of complicated microstructures or low contrasted images to be studied. This introduces the main message of this manuscript: there is a need to develop image processing strategies so as to extract quantitative information from 3D images. In this context, the next three chapters are devoted to different challenging studies, both from the materials science and computer science points of view, in the order of presentation, they deal with thermal oxidation in graphite for nuclear applications, intergranular stress corrosion cracking in austenitic stainless steel and propagation of fatigue crack in (α+β) titanium alloys with lamellar microstructure. The author contributed to each of those research areas, both at the experimental and computing level, in each chapter, the results obtained from X-ray tomography are highlighted, with a particular focus on microstructural features that influence the degradation process. Then, the study is put into a computer science context and the novel image processing or image analysis algorithm that has been developed is presented. The last step concerns, when applicable, the study of the results from a materials science point of view, based on the quantitative data obtained thanks to image processing. This work is interdisciplinary, a great deal of effort has therefore been put in the writing of this manuscript to make it readily comprehensible for both materials and computer scientists who are willing to get more information about the other field of science.
PL
Niniejsza rozprawa habilitacyjna przedstawia nowe metody eksperymentalne i obliczeniowe stosowane do badania stopnia degradacji materiałów konstrukcyjnych. Zadania te zostały zrealizowane przez zastosowanie tomografii rentgenowskiej i nowych algorytmów analizy i przetwarzania obrazów. Praca składa się z czterech rozdziałów. W pierwszym zostały zaprezentowane najczęstsze procesy prowadzące do degradacji materiałów konstrukcyjnych. Przedstawiono w nim również jak w ciągu ostatnich dziesięciu lat tomografia rentgenowska stała się nieniszczącym narzędziem do trójwymiarowej wizualizacji tych procesów. Zjawisko to zostało szczegółowo przedstawione na przykładzie ilościowej analizy procesu rozprzestrzeniania się przełomu w materiałach kompozytowych. Materiał ten został specjalnie wyprodukowany w celu spełnienia wymagań tomografii rentgenowskiej. Na tym przykładzie wykazano wyraźnie, że poza unikatowością obrazu trójwymiarowego uzyskanego za pomocą tomografii rentgenowskiej zawiera on również wiele informacji o charakterze jakościowym wynikających z analizy skomplikowanej mikrostruktury lub niskiego kontrastu analizowanych obrazów. Pozwala to sformułować ważny wniosek wynikający z pracy: należy rozwijać badania w dziedzinie przetwarzania obrazów w celu pozyskiwania informacji ilościowych z obrazów 3D. Kolejne trzy rozdziały są poświęcone przedstawieniu wyników prac zarówno z punktu widzenia inżynierii materiałowej, jak i systemów komputerowych. Obejmują one zagadnienia procesu utleniania grafitu używanego w technice jądrowej, naprężeniowej korozji międzykrystalicznej w austenitycznych stalach nierdzewnych, jak również propagacji szczeliny zmęczeniowej w stopach (α+β) tytanu o strukturze płytkowej. Autor przedstawił swój nowatorski udział w poszczególnych badaniach, zarówno w części doświadczalnej, jak i obliczeniowej. W każdym z rozdziałów zostały podkreślone wyniki uzyskane z tomografii rentgenowskiej, ze szczególnym naciskiem położonym na elementy mikrostruktury, które mają wpływ na proces niszczenia materiału. Następnie przeprowadzone badania zostały rozpatrzone w kontekście systemów komputerowych i zostały zaprezentowane nowe strategie obliczeniowe w zakresie przetwarzania obrazów. W ostatniej części pracy zostały przedstawione wyniki badań z punktu widzenia inżynierii materiałowej, bazujące na danych ilościowych uzyskanych jako wynik przetwarzania obrazów. Praca ma charakter interdyscyplinarny. Duży nacisk został położony przez autora na całościowe przygotowanie pracy w formie zrozumiałej zarówno dla specjalistów z dziedziny inżynierii materiałowej, jak i systemów komputerowych, którzy chcieliby uzyskać więcej informacji dotyczących drugiej dziedziny wiedzy.
Rocznik
Tom
Strony
3--123
Opis fizyczny
Bibliogr. 172 poz.
Twórcy
autor
  • Katedra Informatyki Stosowanej, Politechnika Łódzka
Bibliografia
  • [1] ABRAMOFF, M.D., MAGALHAES, P.J. and RAM, S.J., 2004. Image processing with image J. Biophotonics International, 11: p. 36-41.
  • [2] AKTOUF, Z., BERTRAND, G. and PERROTON, L., 2002. a three-dimensional holes closing algorithm. Pattern Recognition Letters, 23: p. 523-531.
  • [3] APPLETON, B. and TALBOT, H., 2006. Globally minimal surfaces by continuous maximal flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28: p. 106-118.
  • [4] ASHBY, M., 2005. Materials selection in mechanical design (third edition). Oxford: Butterworth-Heinemann. 624 p.
  • [5] ATTIX, F.H.R. and ROESCH, W.C., 1968. Radiation dosimetry. Volume I: Fundamentals. New York: Academic Press.
  • [6] BABOUT, L., 2006. a novel computational approach to detect isolated and continuous phase in structured materials. In: Proceedings of 2nd International Conference of Young Scientists "Perspective Technologies and Methods in MEMS Design" - MEMSTECH 2006. Lviv-Polyana, Ukraine: IEEE, Piscataway, NJ, USA. p. 39-42.
  • [7] BABOUT, L., BRECHET, Y., MAIRE, E. and FOUGERES, R., 2004a. On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Materialia, 52: p. 4517-4525.
  • [8] BABOUT, L., DA FONSECA, J.Q. and PREUSS, M., 2004b. Local strain imaging during mechanical loading of lamellar microstructures in titanium based alloys. In: Advances in Experimental Mechanics. Applied Mechanics and Materials. 159-164 p.
  • [9] BABOUT, L. and JANASZEWSKI, M., 2009. Analysis of bridge ligaments in 3D volumetric images using discrete topology. Automatyka: p. 771-781.
  • [10] BABOUT, L., JANASZEWSKI, M., BAKAVOS, D., MCDONALD, S.A., PRANGNELL, P.B., MARROW, T.J. and WITHERS, P.J., 2010a. 3D Inspection of Fabrication and Degradation Processes from X-ray (micro) Tomography Images using a Hole Closing Algorithm. In: Proceedings of IEEE International Conference on Image Systems and Techniques (IST2010). Thessaloniki, Greece, p. 337-342.
  • [11] BABOUT, L., JANASZEWSKI, M., MARROW, T.J. and WITHERS, P.J., 2010b. How to fill a hole in a crack? Case study of intergranular stress corrosion cracking in austenitic stainless steel. Scripta Materialia. Submitted.
  • [12] BABOUT, L., JOPEK, L., JANASZEWSKI, M., PREUSS, M. and BUFFIERE, J.-Y., 2009. Wavelet-based texture segmentation of titanium based alloy lamellar microstructure: application to images from optical microscope and X-ray microtomography, Elektryka, 114: p. 181-187.
  • [13] BABOUT, L., LUDWIG, W., MAIRE, E. and BUFFIERE, J.Y., 2003. Damage assessment in metallic structural materials using high resolution synchrotron X-ray tomography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 200: p. 303-307.
  • [14] BABOUT, L., MAIRE, E., BUFFIERE, J.Y. and FOUGERES, R., 2001. Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Materialia, 49: p. 2055-2063.
  • [15] BABOUT, L., MAIRE, E. and FOUGERES, R., 2004c. Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Materialia, 52: p. 2475-2487.
  • [16] BABOUT, L., MARROW, T.J., ENGELBERG, D. and WITHERS, P.J., 2006a. X-ray microtomographic observation of intergranular stress corrosion cracking in sensitised austenitic stainless steel. Materials Science and Technology, 9: p. 1068-1075.
  • [17] BABOUT, L., MARROW, T.J., MUMMERY, P.M. and WITHERS, P.J., 2006b. Mapping the evolution of density in 3D of thermally oxidised graphite for nuclear applications. Scripta Materialia, 54: p. 829-834.
  • [18] BABOUT, L., MARROW, T.J. and PREUSS, M., 2006c. Sequential X-ray tomography studies of damage assessment in materials science. In: Proceedings of 4th Symposium on Process Tomography in Poland. Warsaw, p. 159-162.
  • [19] BABOUT, L., MARSDEN, B.J., MUMMERY, P.M. and MARROW, T.J., 2008. Three-dimensional characterization and thermal property modelling of thermally oxidized nuclear graphite. Acta Materialia, 56: p. 4242-4254.
  • [20] BABOUT, L., MUMMERY, P.M., MARROW, T.J., TZELEPI, A. and WITHERS, P.J., 2005. The effect of thermal oxidation on polycrystalline graphite studied by X-ray tomography. Carbon, 43: p. 765-774.
  • [21] BARUCHEL. J., BUFFIERE, J.Y., MAIRE, E., MERLE, P. and PEIX, G., 2000. X-ray tomography in materials science. Paris: Hermes Science, 204 p.
  • [22] BENNETT, J.A. and YOUNG, R.J., 1997. Micromechanical aspects of fibre/crack interactions in an aramid/epoxy composite. Composites Science and Technology, 57: p. 945-956.
  • [23] BERRE, C, FOK, S.L., MARSDEN, B.J., MUMMERY, P.M., MARROW, T.J. and NEIGHBOUR, G.B., 2008a. Microstructural modelling of nuclear graphite using multi-phase models. Journal of Nuclear Materials, 380: p. 46-58.
  • [24] BERRE, C., FOK, S.L., MUMMERY, P.M., ALI, J., MARSDEN, B.J., MARROW, T.J. and NEIGHBOUR, G.B., 2008b. Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modelling. Journal of Nuclear Materials, 381: p. 1-8.
  • [25] BERTRAND, G., 1994. Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters, 15: p. 1003-1011.
  • [26] BERTRAND, G. and MALANDAIN, G., 1994. a new characterization of three-dimensional simple points. Pattern Recognition Letters. 15: p. 169-175.
  • [27] BIROSCA, S., BUFFIERE, J.Y., GARCIA-PASTOR, F.A., KARADGE, M., BABOUT, L. and PREUSS, M., 2010. Corrigendum to "Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction" [Acta Materialia 57 (2009) 5834-5847](DOI:10.1016/j.actamat.2009.08.009). Acta Materialia, 58: p. 1466.
  • [28] BOCCACCINI, A.R., 1998. Incorporation of porosity to control the residual thermal stresses in ceramic composites and laminates. The European Physical Journal: Applied Physics, 2: p. 197-202.
  • [29] BORGEFORS, G., 1986. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34: p. 344-371.
  • [30] BREVAL, E., KLIMKIEWICZ, M., AGRAWAL, D.K. and RUSINKO, F., 2002. Pinhole formation and weight loss during oxidation of industrial graphite and carbon. Carbon, 40: p. 1017-1027.
  • [31] BROCKLEHURST, J.E., BROWN, R.G., GILCHRIST, K.E. and LABATON, V.Y., 1970. The effect of radiolytic oxidation on the physical properties of graphite. Journal of Nuclear Materials, 35: p. 183-194.
  • [32] BUFFIERE, J.-Y., SAVELLI, S., JOUNEAU, P.H., MAIRE, E. and FOUGERES, R., 2001. Experimental study of porosity and its relation to fatigue mechanisms of model Al-Si7-Mg0.3 cast Al alloys. Materials Science and Engineering: A, 316: p. 115-126.
  • [33] BUFFIERE, J.-Y., MAIRE, E., CLOETENS, P., LORMAND, G. and FOUGERES, R., 1999. Characterization of internal damage in a MMC_p using X-ray synchrotron phase contrast microtomography. Acta Materialia, 47: p. 1613-1625.
  • [34] BURCHELL, T.D., 2001. Thermal properties and nuclear energy applications. In: Graphite and Precursors. P. Delhaes, Editor. CRC Press. 312 p.
  • [35] BURCHELL, T.D., PICKUP, I.M., MCENANEY, B. and COOKE, R.G., 1986. The relationship between microstructure and the reduction of elastic modulus in thermally and radiolytically corroded nuclear graphites. Carbon, 24: p. 545-549.
  • [36] BYSTRZYCKI, J., PRZETAKIEWICZ, W. and KURZYDŁOWSKI, K.J., 1993. Study of annealing twins and island grains in F.C.C. alloy. Acta Metallurgica et Materialia, 41: p. 2639-2649.
  • [37] CALAS-BLANCHARD, C., COMTAT, M., MARTY, J.L. and MAURAN, S., 2003. Textural characterisation of graphite matrices using electrochemical methods. Carbon, 41: p. 123-130.
  • [38] CERNUSCHI, F., AHMANIEMI, S., VUORISTO, P. and MANTYLA, T., 2004. Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. Journal of the European Ceramic Society, 24: p. 2657-2667.
  • [39] CLOETENS, P., LUDWIG, W., BARUCHEL, J., VAN DYCK, D., VAN LANDUYT, J, GUIGAY, J.P. and SCHLENKER, M., 1999. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays. Applied Physics Letters, 75: p. 2912-2914.
  • [40] CLOETENS, P., PATEYRON-SALOME, M., BUFFIERE, J.Y., PEIX, G., BARUCHEL, J., PEYRIN, F. and SCHLENKER, M., 1997. Observation of microstructure and damage in materials by phase sensitive radiography and tomography. Journal of Applied Physics, 81: p. 5878-5886.
  • [41] CORMEN, T.H., LEISERSON, C.E., RIVEST, R.L. and STEIN, C., 2001. Introduction to algorithms (second edition). Cambridge: MIT Press. 1180 p.
  • [42] COUPRIE, M., COEURJOLLY, D. and ZROUR, R., 2007. Discrete bisector function and Euclidean skeleton in 2D and 3D. Image and Vision Computing, 25: p. 1543-1556.
  • [43] DAVIS, J.R., 2000. Corrosion: understanding the basics: ASM International. 563 p.
  • [44] DETTORI, L. and SEMLER, L., 2007. a comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Computers in Biology and Medicine, 37: p. 486-498.
  • [45] DONOHO, D., 2001. Ridge functions and orthonormal ridgelets. Journal of Approximation Theory, 111: p. 143-179.
  • [46] DOUARCHE, N., ROUBY, D., PEIX, G. and JOUIN, J.M., 2001. Relations between X-ray tomography, density and mechanical properties in carbon-carbon composites. Carbon, 39: p. 1455-1465.
  • [47] ELAQRA, H., GODIN, N., PEIX, G., R'MILI, M. and FANTOZZI, G., 2007. Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio. Cement and Concrete Research, 37: p. 703-713.
  • [48] EULER, F., 1957. Simple geometric model for the effect of porosity on materials constants. Journal of Applied Physics, 28: p. 1342-1345.
  • [49] FELDKAMP, L.A., DAVIS, L.C. and KRESS, J.W., 1984. Practical cone-beam algorithm. Journal of Optical Society of America A, 1: p.612-619.
  • [50] FERRIE, E., BUFFIERE, J.-Y. and LUDWIG, W., 2005. 3D characterisation of the nucleation of a short fatigue crack at a pore in a cast Al alloy using high resolution synchrotron microtomography. International Journal of Fatigue, 27: p. 1215-1220.
  • [51] FERRIE, E. and SAUZAY, M., 2009. Influence of local crystallographic orientation on short crack propagation in high cycle fatigue of 316LN steel. Journal of Nuclear Materials, 386-388: p. 666-669.
  • [52] FISCHER, F., LIM, G.T., HANDGE, U.A. and ALTSADT, V., 2009. Numerical simulation of mechanical properties of cellular materials using computed tomography analysis. Journal of Cellular Plastics, 45: p. 441-460.
  • [53] GERTSMAN, V.Y. and BRUEMMER, S.M., 2001. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Materialia, 49: p. 1589-1598.
  • [54] GONZALEZ, M., DOMINGUEZ, G. and BATHIAS, C., 2000. Some Results from X-Ray Computed Tomography Applied to Metal Matrix Composites. Journal of Composites Technology and Research, 22: p. 45-48.
  • [55] GROEBER, M.A., HALEY, B.K., UCHIC, M.D., DIMIDUK, D.M. and GHOSH, S., 2006. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Materials Characterization, 57: p. 259-273.
  • [56] HAMILTON, R.W., FORSTER, M.F., DASHWOOD, R.J. and LEE, P.D., 2002. Application of X-ray tomography to quantify the distribution of TiB2 particulate in aluminium. Scripta Materialia, 46: p. 25-29.
  • [57] HODGKINS, A., MARROW, T.J., MUMMERY, P., MARSDEN, B. and FOK, A., 2006. X-ray tomography observation of crack propagation in nuclear graphite. Materials Science and Technology, 22: p. 1045-1051.
  • [58] HOPPEL, H.W., KAUTZ, M., XU, C-, MURASHKIN, M., LANGDON, T.G., VALIEV, R.Z. and MUGHRABI, H., 2006. An overview: Fatigue behaviour of ultrafine-grained metals and alloys. International Journal of Fatigue, 28: p. 1001-1010.
  • [59] HOROWITZ, H.H., 1983. Chemical studies of polythionic acid stress-corrosion cracking. Corrosion Science, 23: p. 353-362.
  • [60] HYUN, S.K., MURAKAMI, K. and NAKAJIMA, H., 2001. Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Materials Science and Engineering: A, 299: p. 241-248.
  • [61] HYVARINEN, A. and OJA, E., 2000. Independent component analysis: Algorithms and applications. Neural Networks, 13: p. 411-430.
  • [62] JANASZEWSKI, M., COUPRIE, M. and BABOUT, L., 2009. Geometric approach to hole segmentation and hole closing in 3D volumetric objects. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. E. BayroCorrochano and J.O. Eklundh, Editors. Lecture Notes in Computer Science. SPRINGER-VERLAG BERLIN: Berlin. 255-262 p.
  • [63] JANASZEWSKI, M., COUPRIE, M. and BABOUT, L., 2010. Hole filling in 3D volumetric objects. Pattern Recognition, 43: p. 3548-3559.
  • [64] JANASZEWSKI, M., MARROW, T.J. and BABOUT, L., 2007. Adaptive 3D thinning algorithm to detect bridging ligaments during intergranular stress corrosion cracking of stainless steel. In: Proceedings of 5th World Congress on industrial Process Tomography. Bergen, p. 1107-1115.
  • [65] JIVKOV, A.P., STEVENS, N.P.C. and MARROW, T.J., 2006. a three-dimensional computational model for intergranular cracking. Computational Materials Science, 38: p. 442-453.
  • [66] JOHNSON, G., KING, A., HONNICKE, M.G., MARROW, J. and LUDWIG, W., 2008. X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. Journal of Applied Crystallography, 41: p. 310-318.
  • [67] JOHNSON, P.A.V., SCHOFIELD, P., BLANCHARD, A. and KELLY, B.T., 1982. Analysis of the effect of radiolytic oxidation in carbon-dioxide on the transport of gases through graphite. Carbon, 20: p. 141-142.
  • [68] JOPEK, Ł., NOWOTMAK, R., POSTOLSKI, M., BABOUT, L. and JANASZEWSKI, M., 2009. Application of quantum genetic algorithms in feature selection problem. Automatyka, 13: p. 1219-1231. in Polish.
  • [69] KADAR, C., MAIRE, E., BORBELY, A., PEIX, G., LENDVAI, J. and RAJKOVITS, Z., 2004. X-ray tomography and finite element simulation of the indentation behavior of metal foams. Materials Science and Engineering A, 387-389: p. 321-325.
  • [70] KAK, A.C. and SLANEY, M., 1987. Principles of computerized tomographic imaging. New York.
  • [71] KELLY, B.T., MARSDEN, B.J. and HALL, K., Irradiation damage in graphite due to fast neutrons in fission and fusion systems. 2000, Vienna: International Atomic Energy Agency.AEA-TECDOC-1154. 220 p.
  • [72] KENESEI, P., BIERMANN, H. and BORBELY, A., 2005. Structure-property relationship in particle reinforced metal-matrix composites based on holotomography. Scripta Materialia, 53: p. 787-791.
  • [73] KING, A., HERBIG, M., LUDWIG, W., REISCHIG, P., LAURIDSEN, E.M., MARROW, T. and BUFFIERE, J.Y., 2010. Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268: p. 291-296.
  • [74] KING, A., JOHNSON, G., ENGELBERG, D., LUDWIG, W. and MARROW, J., 2008. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science, 321: p. 382-385.
  • [75] KINOSHITA, T. and MUNEKAWA, S., 1997. Effect of grain boundary segregation on thermal conductivity of hot-pressed silicon carbide. Acta Materialia,45: p. 2001-2012.
  • [76] KNUDSEN, P.P., 1959. Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. Journal of American Ceramic Society, 42: p. 376-387.
  • [77] KOKAWA, H., SHIMADA, M. and SATO, Y.S., 2000. Grain-boundary structure and precipitation in sensitized austenitic stainless steel. Journal of Metallurgy, 52: p. 34-37.
  • [78] KONG, T.Y., 1989. a digital fundamental group. Computers and Graphics, 13: p. 159-166.
  • [79] KONG, T.Y. and ROSENFELD, A., 1989. Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing, 48: p. 357-393.
  • [80] KORNEV, A., BABOUT, L., JANASZEWSKI, M. and TALBOT, H., 2010. Outer Surface Reconstruction for 3d Fractured Objects. In: Computer Vision and Graphics, Pts 1 and 2. L. Bolc et al., Editors. Lecture Notes in Computer Science. SPRINGER-VERLAG: Berlin, p. 57-64.
  • [81] LI, W.J., WANG, N., CHEN, I., LIU, G., PAN, Z.Y., GUAN, Y., YANG, Y.H., WU, W.Q., TIAN, J.P., WEI, S.Q., WU, Z.Y., TIAN, Y.C., and GUO, L., 2009. Quantitative study of interior nanostructure in hollow zinc oxide particles on the basis of nondestructive X-ray nanotomography. Applied Physics Letters, 95: 053108.
  • [82] LIMODIN, N., SALVO, L., SUERY, M. and DIMICHIEL, M., 2007. in situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8 wt.% Cu alloy. Acta Materialia, 55: p. 3177-3191.
  • [83] LIN, H. and POPE, D.P., 1993. The influence of grain boundary geometry on intergranular crack propagation in Ni3Al. Acta Metallurgica et Materialia, 41: p. 553-562.
  • [84] LIN, P., PALUMBO, G., ERB, U. and AUST, K.T., 1995. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Metallurgica et Materialia, 33: p. 1387-1392.
  • [85] LLORCA, J-, 2000. Void formation in metal matrix composite. In: Comprehensive composites materials. T.W. Clyne, Editor. Elsevier: Amsterdam. 91-115 p.
  • [86] LUDWIG, W-, BUFFIERE, J.Y., SAVELLI, S. and CLOETENS, P., 2003. Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Materialia, 51: p. 585-598.
  • [87] LUDWIG, W., KING, A., HERBIG, M., REISCHIG, P., MARROW, J., BABOUT, L., LAURIDSEN, E.M., PROUDHON, H. and BUFFIERE, J.Y., 2010. Characterization of polycrystalline materials by combined use of synchrotron X-ray imaging and diffraction techniques. JOM, 62: p. 22-28.
  • [88] LUDWIG, W., SCHMIDT, S., LAURIDSEN, E.M. and POULSEN, H.F., 2008. X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. Journal of Applied Crystallography, 41: p. 302-309.
  • [89] LUTJERING, G., 1998. Influence of processing on microstructure and mechanical properties of(α+ß) titanium alloys. Materials Science and Engineering A, 243: p. 32-45.
  • [90] LUTJERING, G. and WILLIAMS, J.C., 2007. Titanium: engineering materials and processes. Heidelberg: Springer Verlag. 442 p.
  • [91] MAHAJAN, S., PANDE, C.S., IMAM, M.A. and RATH, B.B., 1997. Formation of annealing twins in f.c.c. crystals. Acta Materialia, 45: p. 2633-2638,
  • [92] MAIRE, E., BABOUT, L., BUFFIERE, J.-Y. and FOUGERES,, R., 2001. Recent results on 3D characterisation of microstructure and damage of metal matrix composites and a metallic foam using X-ray tomography. Materials Science and Engineering A, 319-321: p. 216-219.
  • [93] MAIRE, E., BOUAZIZ, O., DI MICHIEL, M. and VERDU, C., 2008. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Materialia, 56: p. 4954-4964.
  • [94] MAIRE, E., CHAIX, J.M., GLANDUT, N., SALVO, L. and BABOUT, L., 2002. Elaboration de composites modeles Al-ZrO2 par métallurgie des poudres. La Revue de Métallurgie-CIT/Science et génie des matériaux: p. 1043-1049.
  • [95] MAIRE, E, COLOMBO, P., ADRIEN, J., BABOUT, L. and BIASETTO, L., 2007. Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. Journal of the European Ceramic Society, 27: p. 1973-1981.
  • [96] MAIRE, E., FAZEKAS, A., SALVO, L., DENDIEVEL, R., YOUSSEF,S., CLOETENS, P. and LETANG, J.M., 2003. X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Composites Science and Technology, 63: p. 2431-2443.
  • [97] MAIRE, E., OWEN, A., BUFFIERE, J.-Y. and WITHERS, P.J., 2001. A synchrotron X-ray study of a Ti/SiCf composite during in-situ straining. Acta Materialia, 49: p. 143-153.
  • [98] MALANDAIN, G., BERTRAND, G. and AYACHE, N., 1993. Topological segmentation of discrete surfaces. International Journal of Computer Vision, 10: p. 183-197.
  • [99] MALLAT, S.G., 1989. a theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: p. 674-693.
  • [100] MARROW, J., LUPRANO, V. and ROBERTS, S., 1993. Scanning acoustic microscopy observations of high-temperature crack-bridging mechanisms in alumina. Journal of the American Ceramic Society, 76: p. 2915-2918.
  • [101] MARROW, T.J., BABOUT, L., JIVKOV, A.P., WOOD, P., ENGELBERG, D., STEVENS, N., WITHERS, P.J. and NEWMAN, R.C., 2006. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. Journal of Nuclear Materials, 352: p. 62-74.
  • [102] MARTIN, C.F., JOSSEROND, C., SALVO, L., BLANDIN, J.J., CLOETENS, P. and BOLLER, E., 2000. Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation. Scripta Materialia, 42: p. 375-381.
  • [103] MARUYAMA, T., KAITO, T., ONOSE, S. and SHIBAHARA, I., 1995. Change in physical properties of high density isotropic graphites irradiated in the "JOYO" fast reactor. Journal of Nuclear Materials, 225: p. 267-272.
  • [104] MASAKI, K., OCHI, Y., MATSUMURA, T. and SANO, Y., 2007. Effects of laser peening treatment on high cycle fatigue properties of degassing-processed cast aluminum allay. Materials Science & Engineering A, 468-470: p. 171-175.
  • [105] MCDONALD, S.A., MUMMERY, P.M., JOHNSON, G. and WITHERS, P.J., 2006. Characterization of the three-dimensional structure of a metallic foam during compressive deformation. Journal of Microscopy, 223: p. 150-158.
  • [106] MCDONALD, S.A., PREUSS, M., MAIRE, E., BUFFIERE, J.Y., MUMMERY, P.M. and WITHERS, P.J., 2003. X-ray tomographic imaging of Ti/SiC composites. Journal of Microscopy, 209: p. 102-112.
  • [107] MEREDITH, R.E. and TOBIAS, C.W., 1962. Conduction in heterogeneous systems. In: Advances in Electrochemistry and Electrochemical Engineering. C.W. Tobias, Editor. Interscience: New York. 15-47 p.
  • [108] MIYOSHI, M., HAMAKUBO, T., KODAMA, T., TSUCHTYA, M., KOISHIKAWA, A. and AOKI, N., 2008. Development of the compact low-energy soft X-ray CT instrument for the soft material structural analysis. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 26: p. 2356-2361.
  • [109] MONTEILLET, F. and MOUSSI, F., 1986. Physique et mecanique de I'endommagement, ed. F. Monteillet and F. Moussi. Les Ulis: Les Editions de Physique. 258 p.
  • [110] MONTMINY, M.D., TANNENBAUM, A.R. and MACOSKO, C.W., 2001. New algorithms for 3-D imaging and analysis of open-celled foams. Journal of Cellular Plastics, 37: p. 501-515.
  • [111] MORALES-RODRIGUEZ, A., REYNAUD, P., FANTOZZI, G., ADRIEN, J. and MAIRE, E., 2009. Porosity analysis of long-fiber-reinforced ceramic matrix composites using X-ray tomography. Scripta Materialia, 60: p. 388-390.
  • [112] NIBLACK, C.W., GIBBONS, P.B. and CAPSON, D.W., 1992. Generating skeletons and centerlines from the distance transform. CVGIP: Graphical Models and Image Processing, 54: p. 420-437.
  • [113] NIGHTINGALE, R.E., 1962. Nuclear graphite. New York and London: Academic Press. 547 p.
  • [114] NIKOLAIDIS, N. and PITA, I., 2001. 3-D Image Processing Algorithms. New York: Wiley-Interscience. 176 p.
  • [115] OSTADI, H-, RAMA, P., LIU, Y., CHEN, R., ZHANG, X.X. and JIANG, K., 2010. Threshold fine-tuning and 3D characterisation of porous media using X-ray nanotomography. Current Nanoscience, 6: p. 226-231.
  • [116] PAL, N.R. and PAL, S.K., 1993. a review on image segmentation techniques. Pattern Recognition, 26: p. 1277-1294.
  • [117] PALUMBO, G., AUST, K.T., LEHOCKEY, E.M., ERB, U. and LIN, P., 1998. On a more restrictive geometric criterion for "special" CSL grain boundaries. Scripta Materialia, 38: p. 1685-1690.
  • [118] PARKER, W.J., JENKINS, R.J., BUTLER, C.P. and ABBOTT, G.L., 1961. Flash method of determining thermal diffusivity. J. Appl. Phys., 32: p. 1679-1684.
  • [119] PETROU, M. and GARCIA SEVILLA, P., 2006. Image processing: Dealing with texture: Wiley. 634 p.
  • [120] PICHLER, O., TEUNER, A. and HOSTICKA, B.J., 1996. a comparison of texture feature extraction using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recognition, 29: p. 733-742.
  • [121] PICKUP, I.M., MCENANEY, B. and COOKE, R.G., 1986. Fracture processes in graphite and the effects of oxidation. Carbon, 24: p. 535-543.
  • [122] PRASHER, R., 2006. Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores. Journal of Applied Physics, 100: p. 064302-1-7.
  • [123] PREUSS, M., WITHERS, P.J., MAIRE, E. and BUFFIERE, J.-Y., 2002. SiC single fibre full-fragmentation during straining in a Ti-6Al-4V matrix studied by synchrotron X-rays. Acta Materialia, 50: p. 3177-3192.
  • [124] PROUDHON, H., BUFFIERE, J.-Y. and FOUVRY, S., 2006. Characterisation of fretting fatigue damage using synchrotron X-ray micro-tomography. Tribology International, 39: p. 1106-1113.
  • [125] RAGHAVAN, S., WANG, H., DINWIDDIE, R.B., PORTER, W.D. and MAYO, M.J., 1998. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scripta Materialia, 39: p. 1119-1125.
  • [126] RANDRIANALISOA, J. and BAILLIS, D., 2007. Thermal conductivity across nanostructured porous silicon films. Journal of Physics: Conference Series, 92: p. 012081-1-4.
  • [127] RATTANASAK, U. and KENDALL, K., 2005. Pore structure of cement/pozzolan composites by X-ray microtomography. Cement and Concrete Research, 35: p. 637-640.
  • [128] REMY, E. and THIEL, E., 2005. Exact medial axis with euclidean distance. Image and Vision Computing, 23: p. 167-175.
  • [129] RICE, R., 2005. Use of normalized porosity in models for the porosity dependence of mechanical properties. Journal of Materials Science, 40: p. 983-989.
  • [130] RICE, R.W., 1996. Evaluation and extension of physical property-porosity models based on minimum solid area. Journal of Materials Science, 31: p. 102-118.
  • [131] ROBERTS, A.P. and GARBOCZI, E.J., 2000. Elastic properties of model porous ceramics. Journal of American Ceramic Society, 83: p. 3041-3048.
  • [132] RUSS, G.C., 1995. The imaging processing handbook. 2 ed. Boca Raton: CRC Press. 771 p.
  • [133] RYAN, M.P., WILLIAMS, D.E., CHATER, R.J., HUTTON, B.M. and MCPHAIL, D.S., 2002. Why stainless steel corrodes. Nature, 415: p. 770-774.
  • [134] SADANANDA, K. and VASUDEVAN, A.K., 2005. Fatigue crack growth behavior of titanium alloys. International Journal of Fatigue, 27: p. 1255-1266.
  • [135] SARRAZIN, C., CHIRON, R., LESTERLIN, S. and PETIT, J., 1994. Electron backscattering pattern identification of surface morphology of fatigue cracks in TA6V. Fatigue and Fracture of Engineering Materials and Structures, 17: p. 1383-1389.
  • [136] SARRAZIN-BAUDOUX, C., 2005. Abnormal near-threshold fatigue crack propagation of Ti alloys: Role of the microstructure. International Journal of Fatigue, 27: p. 773-782.
  • [137] SAÚDE, A.V., COUPRIE, M. and LOTUFO, R.A., 2009. Discrete 2D and 3D euclidean medial axis in higher resolution. Image and Vision Computing, 27: p. 354-363.
  • [138] SAVAGE, M.F., TATALOVICH, J., ZUPAN, M., HEMKER, K.J. and MILLS, M.J., 2001. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Materials Science and Engineering A, 319-321: p. 398-403.
  • [139] SCHIJVE, J., 2009. Fatigue of structures and materials. 2nd ed. Berlin: Springer. 621 p.
  • [140] SCHILLING, P.J., KAREDLA, B.P.R., TATIPARTHI, A.K., VERGES, M.A. and HERRINGTON, P.O., 2005. X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Composites Science and Technology, 65: p. 2071-2078.
  • [141] SCHROEDER, G., ALBRECHT, J. and LUETJERING, G., 2001. Fatigue crack propagation in titanium alloys with lamellar and bi-lamellar microstructures. Materials Science and Engineering A, 319-321: p. 602-606.
  • [142] SCHULZ, B., 1981. Thermal conductivity of porous and highly porous materials. High Temperature High Pressure, 13: p. 649-660.
  • [143] SCOTT, P.M., 2000. Stress corrosion cracking in pressurized water reactors--interpretation, modeling, and remedies. Corrosion, 56: p. 771-782.
  • [144] SERRA, J., 1982. Image Analysis and mathematical morphology. London: Academic Press. 610 p.
  • [145] SEZGIN, M. and SANKUR, B., 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13: p. 146-168.
  • [146] SHEN, H., NUTT, S. and HULL, D., 2004. Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging. Composites Science and Technology, 64: p. 2113-2120.
  • [147] SHIMADA, M., KOKAWA, H., WANG, Z.J., SATO, Y.S. and KARIBE, I., 2002. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Materialia, 50: p. 2331-2341.
  • [148] SINCLAIR, R., PREUSS, M., MAIRE, E., BUFFIERE, J.-Y., BOWEN.P. and WITHERS, P.J., 2004. The effect of fibre fractures in the bridging zone of fatigue cracked Ti-6Al-4V/SiC fibre composites. Acta Materialia, 52: p. 1423-1438.
  • [149] SOILLE, P., 2003. Morphological Image Analysis. 2nd ed. Berlin: Springer. 391 p.
  • [150] STRZELECKI, M., MATERKA, A. and SZCZYPINSKI, P., 2006. MaZda. In: Texture analysis for magnetic resonance imaging. M. Hajek et al., Editors. Med4publishing: Prague. 105-111 p.
  • [151] SUMITA, J., SHIBATA, T., KUNIMOTO, E., YAMAJI, M., KONISHI, T. and SAWA, K., 2010. Investigation of microstructural change by X-ray tomography and anisotropic effect on thermal property of thermally oxidized 2D-C/C composite for very high temperature reactor. Journal of Nuclear Science and Technology, 47: p. 411 -420.
  • [152] TAKAYA, S., SUZUKI, T., MATSUMOTO, Y., DEMACHI, K. and UESAKA, M., 2004. Estimation of stress corrosion cracking sensitivity of type 304 stainless steel by magnetic force microscope. Journal of Nuclear Materials, 327: p. 19-26.
  • [153] TUNER, A., PICHLER, O. and HOSTICKA, B.J., 1995. Unsupervised texture segmentation of images using tuned matched Gabor filters. IEEE Transactions on Image Processing, 4: p. 863-870.
  • [154] THOMASON, P.P., 1990. Ductile fracture of metals (1st edition). Oxford: Pergamon Press. 219 p.
  • [155] THROWER, P.A., BOGNET, J.C. and MATHEW, G.K., 1982. The influence of oxidation on the structure and strength of graphite-I: Materials of different structure. Carbon, 20: p. 457-464.
  • [156] TING, K., 1999. The evaluation of intergranular stress corrosion cracking problems of stainless steel piping in Taiwan BWR-6 nuclear power plant. Nuclear Engineering and Design, 191: p. 245-254.
  • [157] TRILLO, E.A. and MURR, L.E., 1999. Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel. Acta Materialia, 47: p. 235-245.
  • [158] TURNBULL, A., HORNER, D.A. and CONNOLLY, B.J., 2009. Challenges in modelling the evolution of stress corrosion cracks from pits. Engineering Fracture Mechanics, 76: p. 633-640.
  • [159] UTHUS, L., HOFF, I. and HORVLI, I., 2005. Evaluation of grain shape characterization methods for unbound aggregates. In: Proceedings of the Seventh International Conference on the Bearing Capacity of Road, Railways and Airfields. Trondheim.
  • [160] VANDERESSE, N., MAIRE, E., DARRIEULAT, M., MONTHEILLET, F., MOREAUD, M. and JEULIN, D., 2008. Three-dimensional microtomographic study of Widmanstatten microstructures in an alpha/beta titanium alloy. Scripta Materialia, 58: p. 512-515.
  • [161] VASUDEVAN, A.K., SADANANDA, K. and GLINKA, G., 2001. Critical parameters for fatigue damage. International Journal of Fatigue, 23: p. S39-S53.
  • [162] VISAGE IMAGING, 2008. Amira(tm) 5 User's guide. 407 p.
  • [163] WASNIK, D.N., KAIN, V., SAMAJDAR, I., VERLINDEN, B. and DE, P.K., 2002. Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries. Acta Materialia, 50: p. 4587-4601.
  • [164] WECK, A., WILKINSON, D.S. and MAIRE, E., 2008a. Observation of void nucleation, growth and coalescence in a model metal matrix composite using X-ray tomography. Materials Science and Engineering A, 488: p. 435-445.
  • [165] WECK, A., WILKINSON, D.S., MAIRE, E. and TODA, H., 2008b. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials. Acta Materialia, 56: p. 2919-2928.
  • [166] WHITE, I.E., SMITH, G.M., SAUNDERS, L.J., KAYE, C.J., MARTIN, T.J., CLARKE, G.H. and WAKERLEY, M.W., Assessment of management modes for graphite from reactor decommissioning. 1984, Brussels: CEC Nuclear Science and Technology. EUR 9232. 119p.
  • [167] WISMANS, J.G.F., VAN DOMMELEN, J.A.W., GOVAERT, L.E., MEIJER, H.E.H. and VAN RIETBERG, B., 2009. Computed tomography-based modeling of structured polymers. Journal of Cellular Plastics, 45: p. 157-179.
  • [168] WITHERS, P.J., 2007. X-ray nanotomography. Materials Today, 10: p. 26-34.
  • [169] WRIGHT, P., MOFFAT, A., SINCLAIR, I. and SPEARING, S.M., 2010. High resolution tomographic imaging and modelling of notch tip damage in a laminated composite. Composites Science and Technology, 70: p. 1444-1452.
  • [170] ZAEFFERER, S., 2003. a study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture. Materials Science and Engineering A, 344: p. 20-30.
  • [171] ZHANG, H., TODA, H., QU, P.C., SAKAGUCHI, Y., KOBAYASHI, M., UESUGI, K. and SUZUKI, Y., 2009. Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography. Acta Materialia, 57: p. 3287-3300.
  • [172] ZHOU, Y. and TOGA, A.W., 1999. Efficient skeletonization of volumetric objects. IEEE Transactions on Visualization and Computer Graphics, 5: p. 196-209.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0022-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.