PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetyka degradacji wybranych ksenobiotyków w roztworach wodnych metodami fotochemicznymi

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Zanieczyszczenie wód śladowymi ilościami substancji chemicznych pochodzenia antropogenicznego, obcymi dla środowiska wodnego stanowi zagrożenie dla prawidłowego rozwoju fauny i flory, a także zdrowia ludzi. Poszukiwanie skutecznych metod eliminacji tego rodzaju zanieczyszczeń jest przedmiotem zainteresowania wielu ośrodków naukowo-badawczych. W pracy przedstawiono wyniki badań nad degradacją ksenobiotyków w roztworach wodnych na drodze procesów inicjowanych fotochemicznie. Wybrane obiekty badań należą do substancji wysoce toksycznych, wykazujących działanie kancerogenne i mutagenne oraz zakłócających prawidłowe funkcjonowanie organów wydzielania wewnętrznego. W grupie badanych związków znalazły się wielopierścieniowe węglowodory aromatyczne: benzo[a]piren, chryzenu i fluoren; pochodne fenolowe: 2-chlorofenol, n-butyloparaben, 4-fert-oktylofenol i dwa sterydy anaboliczne: boldenon i trenbolon. Do degradacji tych związków wykorzystano bezpośrednie działanie promieniowaniem UV oraz reakcję rodników hydroksylowych generowanych poprzez fotolizę nadtlenku wodoru. Trzecią zastosowaną metodą było utlenianie molekularnym tlenem singletowym, uzyskiwanym w procesie fotosensybilizowanego utleniania z użyciem jako sensybilizatorów: różu bengalskiego, błękitu metylenowego, chloryny e6 i chlorku glinowego tetrasulfonowanej ftalocyjaniny. Wykonane badania były ukierunkowane na określenie wpływu warunków reakcyjnych na szybkość procesu, i w większości dotyczyły układów modelowych. Obejmowały one określenie wpływu odczynu środowiska reakcyjnego, stężenia zanieczyszczeń, mocy i zakresu spektralnego stosowanego promieniowania, obecności i stężenia tlenu, a także, w odpowiednich procesach, stężenia nadtlenku wodoru i sensybilizatorów. Przebieg reakcji obserwowany był też w obecności pewnych dodatków o charakterze zmiataczy reaktywnych form tlenu, co pozwalało wyjaśnić mechanizm zachodzących reakcji. Zebrane w toku doświadczeń informacje umożliwiły zbudowanie modeli kinetycznych badanych procesów, opartych na reakcjach elementarnych oraz wyznaczenie parametrów kinetycznych badanych reakcji - wydajności kwantowych degradacji i stałych szybkości reakcji. Przeprowadzone badania przyczyniły się do lepszego poznania procesów degradacji fotochemicznej, zachodzących w naturalnych zbiornikach wodnych, a jednocześnie umożliwiły ocenę przydatności stosowanych metod do praktycznego usuwania groźnych zanieczyszczeń ze strumienia ścieków. Wyznaczone parametry kinetyczne, dla wielu reakcji po raz pierwszy, mogą być wykorzystane do modelowania procesów fotochemicznych zachodzących w przyrodzie, jak i w pracach projektowych przy ewentualnym zastosowaniu metod fotochemicznych do oczyszczania wód.
EN
Pollution of the aquatic environment by trace amounts of anthropogenic chemical substances has a hazardous impact on development of plants and animals as well as on the human health. The search for efficient methods to eliminate such pollutants attracts interest of many scientific centers. The work presented here includes results of studies on the degradation of xenobiotics in aqueous solutions using photochemically initiated processes. The chosen target compounds belong to the class of highly toxic substances, showing carcinogenic and mutagenic activity and disrupting regular functions of endocrine glands. The studied group of compounds comprised the polycyclic aromatic hydrocarbons: benzo[a]pyrene, chrysene and fluorine; phenol derivatives: 2-chlorophenol, n-butylparaben, 4-tert-octylphenol and two anabolic steroids: boldenone and trenbolone. Photolysis as well as reactions of hydroxyl radicals generated by hydrogen peroxide photolysis, were applied for degradation. The third method was oxidation by molecular singlet oxygen, formed in photosensitized oxidation using rose bengal, methylene blue, chlorine e6 and tetrasulfonated aluminum phthalocyanine chloride as sensitizers. The presented studies of model systems were performed to determine the influence of experimental conditions on the reaction rate. The investigated parameters covered the pH of the reaction solution, pollutant concentration, the power and spectral distribution of the used radiation, the presence and content of oxygen, and the concentrations of hydrogen peroxide and sensitizers in relevant processes. The reaction course was also observed in the presence of specific additives acting as scavengers of reactive oxygen species, which enabled explanation of the mechanism of undergoing reactions. Data collected during the experiments made it possible to construct kinetic models based on elementary reactions and subsequently, to determine kinetic parameters - quantum yield of degradation and rate constants. The studies contributed to better understanding of the photochemical degradation processes which occur in natural aquatic reservoirs and simultaneously enabled estimation of the applicability of studied methods for removal of hazardous pollutants from wastewaters. The kinetic parameters of some reactions were determined for the first time. They can be of practical use in modeling of photochemical processes occurring in nature and they can also be applied in designing of wastewater treatment installations based on photochemical methods.
Rocznik
Tom
Strony
3--94
Opis fizyczny
Bibliogr. 195 poz.
Twórcy
autor
  • Wydział Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka
Bibliografia
  • [1] C.G. Campbell. S.E. Borglin, F.B. Green, A. Grayson, E. Wozei, W.T. String-fellow: Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 65, 1265-1280 2006.
  • [2] S. Markman, I. Guschina, S. Bamsley, K.L. Buchanan, D. Pescoe, C.T. Müller: Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent. Chemosphere, 70, 119-125, 2007.
  • [3] F.A. Caliman, M. Gavrilescu: Pharmaceuticals, personal care products and endocrine disrupting agents in the environment - a review. Clean - Soil, Air, Water, 37 277-303, 2009.
  • [4] B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy: The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res., 43, 363-380, 2009.
  • [5] B. Ning, N. Graham, Y. Zhang, M. Nakonechny, M.G. El-Din: Degradation of endocrine disrupting chemicals by ozone / AOPs. Ozone Sci Eng., 29 153-176, 2007.
  • [6] S.A. Snyder, E,C. Wert, D.J. Rexing, R.E. Zegers, D.D. Drury: Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone Sci. Eng. 28,445-460, 2006.
  • [7] S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti: Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater.,149 631-642, 2007.
  • [8] Z. Liu, Y. Kanjo, S. Mizutani: Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ., 407, 731-748, 2009.
  • [9] M.F. Rahman, E.K. Yanful, S.Y. Jasim, L.M. Bragg, M.R. Servos, S. Ndiongue, D. Borikar: Advanced oxidation treatment of drinking water: Part I. Occurrence and removal of pharmaceuticals and endocrine-disrupting compounds from Lake Huron water. Ozone Sci. Eng. 32,217-229, 2010.
  • [10] A. Biłyk, G. Nowak-Piechota: Zanieczyszczenie środowiska substancjami powodującymi zakłócenie funkcji endokrynologicznych organizmu. Ochrona Środowiska, 26,29-35, 2004.
  • [11] J. Lintelmann, A. Katayama, N. Kurihara, L. Shore, A. Wenzel: Endocrine disruptors in the environment (IUPAC Technical Report) Pure Appl. Chem., 75(5), 631-681, 2003.
  • [12] Commission of the European Communities http://ec.europa.eu/environment/endocrine/documents/sec 2007_1635_en.pdf Community strategy for endocrine disrupters - a range of substances suspected of interfering with hormone systems of humans and wildlife. Brussels, 30.11.2007, SEC (2007) 1635 2007.
  • [13] N. Xue, X. Xu, Z. Jin: Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir Chemosphere, 61 1594-1606,2005.
  • [14] A.M. Nienow, J.C. Bezares-Cruz, I.C. Poyer, I. Hua, C.T. Jafvert: Hydrogen peroxide - assisted UV photodegradation of Lindane. Chemosphere, 72, 1700-1705,2008.
  • [15] A. Manassero, C. Passalia, A.C. Negro, A.E. Cassano, C.S. Zalazar: Glyphosate degradation in water employing the H2O2/UV process. Water Res., 44, 3875-3882, 2010.
  • [16] H. Rüdel, J. Müller, J. Steinhanses: Retrospective monitoring of organotin compounds in freshwater fish from 1988 to 2003: results from German environmental specimen bank. Chemosphere, 66,1884-1894, 2007.
  • [17] S. Nakai, S. Kishita, Y. Nomura, M. Hosomi: Polychlorinated dibenzotiophenes in Japanese environmental samples and their photodegradability and dioxin-like endocrine-disruption potential. Chemosphere 67 1852-1857,2007.
  • [18] R.J. Law, C.R. Allchin, J. de Boer, A. Covaci, D. Herzke, P. Lepom, S. Morris, J. Tronczynski, C.A. de Wit: Levels and trends of brominated flame retardants in the European environment. Chemosphere, 64 187-208, 2006.
  • [19] R.C. Hale, M.J. La Guardia, E. Harvey. M.O. Gaylor, T.M. Mainor: Brominated flame retardant concentrations and trends in abiotic media. Chemosphere, 64,181-186,2006.
  • [20] T.J. Collins: Persuasive communication about matters of great urgency: endocrine disruption. Environ. Sci. Technol., 42,7555-7558, 2008.
  • [21] N.R. Janjua, G.K. Mortensen, A.M. Andersson, B. Kongshoj, N.E. Skakkebak, H.C. Wulf: Systematic uptake of diethylphthalate, and butyl paraben following whole body topical application and reproductive and thyroid hormone levels in humans. Environ. Sci. Technol., 41, 5564-5570, 2007.
  • [22] S. Barnabé, I. Beauchesne, D.G. Cooper, J.A. Nicell: Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Res., 42 153-162, 2008.
  • [23] M. Dudziak, K. Luks-Betlej: Ocena obecności estrogenów - steroidowych hormonów płciowych - w wybranych wodach rzecznych w Polsce. Ochrona Środowiska 26,21-23, 2004.
  • [24] A.M., Solo, J.M. Calabro, N.V. Prechtl, A.Y. Yau, E.R Orlando, A. Daxenberger, A.S. Kolok, L.J. Guillette Jr., B. le Bizec l.G. Lange, C. Son-nenschein: Androgenic and estrogen activity in water bodies receiving cattle feedlot effluent in eastern Nebraska, USA. Environ. Health Perspect., 112, 346-352, 2004.
  • [25] Z. Liu, Y. Kanjo, S. Mizutani: A review of phytoestrogens: Their occurrence and fate in the environment. Water Res., 44, 567-577, 2010.
  • [26] T. Kupper, C. Plagellat, R.C. Brändli, L.F. de Alencastro, D. Grandjean, J. Tarradellas: Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment. Water Res., 40,2603-2612, 2006.
  • [27] T.K. Lau, W. Chu, N. Graham: Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozonation, and UV/O3 processes. Water Res., 41, 765-774, 2007.
  • [28] B. Kasprzyk-Hordern, R.M. Dinsdale, AJ. Guwy: The occurrence of pharmaceuticals, personal care products, endocrine disrupters and illicit drugs in surface water in South Wales, UK Water Res., 42, 3498-3518, 2008.
  • [29] M. Clara, S. Scharf, C. Scheffknecht, O. Gans: Occurrence of selected surfactants in untreated and treated sewage. Water Res., 41,4339-4348, 2007.
  • [30] D. Dąbrowska, A. Kot-Wasik, J. Namieśnik: Pathways and analytical tools in degradation studies of organic pollutants. Crit. Rev. Anal. Chem., 35, 155-176, 2005.
  • [31] F. Ingerslev, E. Vaclavik, B. Halling Sorensen: Pharmaceuticals and personal care products: A source of endocrine disruption in the environment? Pure Appl. Chem., 75, 1881-1893,2003.
  • [32] V. Matamoros, C. Arias, H. Brix, J.M. Bayona: Removal of pharmaceuticals and personal care products(PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and sand filter. Environ. Sci. Technol., 41, 8171-8177, 2007.
  • [33] J.L., Acero, F.J. Benitez, F.J. Real, G. Roldan: Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Res., 44,4158-4170, 2010.
  • [34] S.P. Forsey, N.R. Thomson, J.F. Barker: Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere, 79,628-636, 2010.
  • [35] N. Nakada, H. Shinohara, A. Murata, K. Kiri, S. Managaki, N. Sato, H. Takada: Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res., 41,4373-4382, 2007.
  • [36] J. Radjenović, M. Petrović, F. Ventura, D. Barceló: Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res., 42 3601-3610, 2008.
  • [37] I. Arslan-Alaton, E. Erdnc: Effect of photochemical treatment on the biocompatibility of a commercial nonionic surfactant used in textile industry. Water Res., 40, 3409-3418, 2006.
  • [38] D. Broman, C. Näf, C. Rolff, Y. Zebühr: Occurrence and dynamics of poly-chlorinated dibenzo-p -dioxins and dibenzofurans and polycyclic aromatic hydrocarbons in the mixed surface layer of remote coastal and offshore waters of the Baltic. Environ. Sci. Technol. 25, 1850-1864, 1991.
  • [39] W. Bąkowski, D. Bodzek: WWA w naturalnym środowisku człowieka, pochodzenie, występowanie, toksyczność, oszacowania emisji w Polsce. Archiwum Ochrony Środowiska, 197 (3-4), 157-215, 1998.
  • [40] W.R., Mabey, J.H. Smith, R.T. Podoll, H.L. Johnson, T. Mill, T.W. Chou, J. Gates, I.W. Partridge, D. Vandenberg: EPA-440/4-81-014. US Environmental Protection Agency, Washington, DC. 1979.
  • [41] K. Srogi: Monitoring of environmental exposure to polycyclic aromatic hydro-carbons : a review. Environ. Chem. Lett., 5, 169-195, 2007.
  • [42] C.A. Menzie, B.B. Potocki, J. Santodonalo: Exposure to the carcinogenic PAHs in the environment. Environ. Sci. Technol., 26, 1278-1284, 1992.
  • [43] L. Palrolecco, N. Ademollo, S. Capri, R. Pagnotta, S. Polesello: Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediments and common eels (Anguilla anguilla) in the urban stretch of the river Tiber (Italy). Chemospherc, 81, 1386-1392,2010.
  • [44] A. Filipkowska, L. Lubecki, G. Kowalewska: Polycyclic aromatic hydrocarbon analysis in different matrices of the marine environment. Anal. Chim. Acta, 547, 243-254, 2005.
  • [45] A.L. Cashman, E.M. Warshaw: Parabens: A review of epidemiology, structure, allergenicity and hormonal properties. Dermatitis, 16(2), 57-66, 2005.
  • [46] M.G. Soni, I.G. Carabin, G.A. Burdock: Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem. Toxicol., 43, 985-1015, 2005.
  • [47] D. Miller, B.B. Wheals, N. Bersford, J. Sumpter: Estrogenic Activity of phenolic additives determination by an in vitro yeast bioassay. Environ. Health Perspect., 109(2), 133-138,2001.
  • [48] S. Oishi: Effects of butyl paraben on the male reproductive system in mice. Arch Toxicol., 76,423-429, 2002.
  • [49] K.L. Pedersen, S.N. Pedersen, L.B. Christiansen, B. Korsgaard, P. Bjerregaard: The preservatives ethyl-, propyl- and butylparaben are oestrogenic in an in vivo fish assay. Pharmacol. Toxicol., 86, 110-113, 2000.
  • [50] OSPAR: Hazardous Substances Series: Octylphenol, Commission. Pub. No. 273/2006 ISBN 1-905859-00-7. (www.ospar.org) 2006.
  • [51] B. Ning, N.J.D. Graham, Y. Zhang: Degradation of octylphenol and nonylphenol by ozone - Part II: Indirect reaction. Chemosphere, 68, 1173-1179, 2007.
  • [52] R. Gadzała-Kopciuch, A. Filipiak, B. Buszewski: Isolation, purification and determination of 4-n-nonylphenol and 4-tert-octylphenol in aqueous and biological samples. Talanta, 74, 655-660, 2008.
  • [53] T. Isobe, H. Nishiyama, H. Nakashima, H. Takada: Distribution and behavior of nonylphenol, octylphenol and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ. Sci. Technol., 115, 291-301, 2001.
  • [54] J. Gibs, P.E. Stackelberg, E.T. Furlong, M. Meyer, S.D. Zaugg, R.L. Lippincott: Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of lime. Sci. Total Environ., 373(1), 240-249, 2007.
  • [55] M. Pera-Titus, V. Garcia-Molina, M.A. Baños, J. Gimenez, S. Esplugas: Degradation of chlorophenols by means of advanced oxidation processes: a general review. App. Catal., B, 47, 219-256, 2004.
  • [56] H.D. Burrows, L.M. Canle, J.A. Santaballa, S. Steenken: Reaction pathways and mechanisms of photodegradation of pesticides. J. Photochem. Phobiol. B, 67,71-108,2002.
  • [57] M. Czaplicka: Photo-degradation of chlorophenols in the aqueous solution. J. Hazard. Mater., B134, 425-437, 2006.
  • [58] Council Directive 03/74/EC: Commission of the European Communities: Off. J. Eur. Communities Legis L262, 2003.
  • [59] H.F. De Brabander, S. Poelmans, R. Schilt, R.W. Stephany, B. Le Bizec, R. Draisci, S.S. Sterk, L.A. van Ginkel, D. Courtheyn, N. Van Hoof, A. Macri, K. De Wasch: Presence and metabolism of the anabolic steroid boldenone in various animal species: a review. Food Addit. Contam., 21, 515-525, 2004.
  • [60] B. Schiffer, A. Daxenberger, K. Meyer, H.H.D. Meyer: The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: Environmental studies. Environ. Health Perspect., 109, 1145-1151, 2001.
  • [61] W.H. Glaze, J.W. Kang, D.H. Chapin: The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng., 9, 335-352, 1987.
  • [62] T. Oppenländer: Photochemical purification of water and air. Wiley-VCH, Weinheim, 2003.
  • [63] U.I. Gaya, A.H. Abdullah: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol., C, 9,1-12, 2008.
  • [64] N.V. Blough, R.G. Zepp: Reactive oxygen species in natural waters. W: Active oxygen in chemistry. Eds. C.S. Foot, J. Silverstone Valentine, A. Greenberg, J.F. Liebman Chapmann & Hall, London, 1995.
  • [65] S. Ledakowicz, J.S. Miller, D. Olejnik: Oxidation of PAHs in water solutions by ozone combined with ultraviolet radiation. Int. J. Photoenergy 3, 55-60, 2001.
  • [66] M.M. Huber, S. Canonica, G.Y. Park, U. von Gunten: Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol.,37, 1016-1024,2003.
  • [67] S. Irmak, O. Erbatur, A. Akgerman: Degradation of 17ß-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J. Hazard. Mater., 126, 54-62, 2005.
  • [68] B. Bayarri, J. Giménez, D. Curcó, S. Esplugas: Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: Kinetics, actinometries and models._Catal. Today, 101, 227-236, 2005.
  • [69] S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta: Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution - kinetics, mineralization and reaction mechanism. Chem. Eng. J., 125, 59-66, 2006.
  • [70] S. Yamazaki, T. Mori, T. Katou, M. Sugihara, A. Saeki, T. Tanimura: Photocatalytic degradation of 4-tert-octylphenol in water and the effect of peroxydi-sulfate as additives. J. Photochem. Photobiol., A, 199, 330-335, 2008.
  • [71] R. Vargas, O. Nuñez: The photocatalytic oxidation of dibenzothiophenc (DBT). J. Mol. Catal. A: Chem., 294, 74-81, 2008.
  • [72] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint: Recent developments in photocatalytic water treatment technology; A review. Water Res., 44, 2997-3027,2010.
  • [73] M.J. Benotti, B.D. Stanford, B.C. Wert, S.A. Synder: Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res., 43, 1513-1522, 2009.
  • [74] A. Zaleska, E. Grabowska, J.W. Sobczak, M. Gazda, J. Hupka: Photocatalytic activity of boron-modified TiO2 under visible Ligot: the effect of boron kontent, calcination temperature and TiO2 matrix. Appl. Catal. B, 89, 469-475, 2009.
  • [75] H.J.H. Fenton: On a new reaction of tartaric acid. Chem.News, 33, 190, 1876.
  • [76] M.A. Tarr: Fenton and modified Fenton methods for pollutant degradation. W: Chemical degradation methods for wastes and pollutants. Ed. M. Tarr M, Dekker, New York, 2003.
  • [77] K.A. Hislop, J.R. Bolton: The photochemical generation of hydroxyl radicals in the UV-vis / ferrioxalate / H2O2 system. Environ. Sci. Technol., 33, 3119-3126, 1999.
  • [78] N. Brand, G. Mailhot, M. Sarakha, M. Bolte: Primary mechanism in the degradation of 4-octylfenol photo induced by Fe(III) in water acetonitrile solution J. Photochem. Photobiol., A, 135, 221-228, 2000.
  • [79] E.J. Rosenfeldt, K.G. Linden: Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol., 38, 5476-5483, 2004.
  • [80] H. Katsumala, S. Kawabe, S. Kaneco, T. Suzuki, O. Kiyohisa: Degradation of bisphenol A in water by the photo-Fenton reaction. J. Photochem. Photobiol., A, 162, 297-305, 2004.
  • [81] X. Feng, T.J. Ding, F. Wu, N. Deng: Degradation of estrone in aqueous solution by photo-Fenton system. Sci. Total Environ., 345, 229-237, 2005.
  • [82] K.S. Tay, N.A. Rahman, M. Radzi Bin Abas: Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation. Chemosphere, 81, 1446-1453, 2010.
  • [83] R.A. Torres, G. Sarantakos, E. Combet, C. Pétrier, C. Pulgarin: Sequential helio-photo-Fenton and sonication processes for the treatment of bisphenol A. J. Photochem. Photobiol., A, 199, 197-203, 2008.
  • [84] R.G. Zepp, B.C. Faust, J. Hoigne: Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide. The photo-Fenton Reaction. Environ. Sci. Technol., 26, 313-319, 1992.
  • [85] E. Lipczynska-Kochany, J. Kochany: Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere, 73,745-750,2008.
  • [86] S. Paszyc: Podstawy fotochemii. PWN, Warszawa, 1992.
  • [87] P. Klan, J. Wirz; Photochemistry of Organic Compounds Wiley, 2009.
  • [88] B. Wardle: Principles and applications of photochemistry. Wiley, Chichester, 2009.
  • [89] X. Xia, G. Li, Z. Yang, Y. Chen, G.H. Huang: Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution; Importance of active oxygen. Environ. Pollut., 157, 1352-1359, 2009.
  • [90] H. Shemer, K.G. Linden: Photolysis, oxidation and subsequent toxicity of a mixture of polycyclic aromatic hydrocarbons in natural waters. J. Photochem. Photobiol., A, 187, 186-195, 2007.
  • [91] H. Shemer, K.G. Linden: Aqueous photodegradation and toxicity of the polycyclic aromatic hydrocarbons fluorine, dibenzofuran, and dibenzothiphene. Water Res., 41, 853-861, 2007.
  • [92] L.E. Jacobs, L.K. Weavers, Y.-P. Chin: Direct and indirect photolysis of polycyclic aromatic hydrocarbons in nitrate-rich surface waters. Environ. Toxicol. Chem.,27, 1643-1648,2008.
  • [93] J.S. Miller, D. Olejnik: Photolysis of polycyclic aromatic hydrocarbons in water. Water Res., 35, 233-243, 2001.
  • [94] M.P. Fasnacht, N.V. Blough: Aqueous photodegradation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol., 36, 4364-4369, 2002.
  • [95] M.P. Fasnacht, N.V. Blough: Mechanisms of the aqueous photodegradation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol., 37, 5767-5772, 2003.
  • [96] M.P. Fasnacht, N.V. Blough: Kinetic analysis of the photodegradation of polycyclic aromatic hydrocarbons in aqueous solution. Aquat. Sci., 65, 352-358, 2003.
  • [97] P. Boule, C, Richard, K. David-Oudjehani, G. Grabner: Photochemical behavior of halophenols in aqueous solution. Proc. Indian Acad. Sci. (Chem. Sci.) 109(6), 509-519, 1997.
  • [98] S. Rayne, K. Forest, K.J. Friesen: Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. Environ. Int., 35, 425-437, 2009.
  • [99] G. Matafanowa, N. Christofi, V. Batoev, E. Sosnin: Degradation of chlorophenols in aqueous media using UV XeBr excilamp in a flow-through reactor. Chemosphere, 70, 1124-1127,2008.
  • [100] P. Mazellier, L. Méité, J. De Laat: Photodegradation of the steroid hormones 17 ß -estradiol (E2), and 17?-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere, 73, 1216-1223,2008.
  • [101] S. Canonica L. Meunier, U. von Gunten: Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Res., 42, 121-128, 2008.
  • [102] D. Gryglik, M. Olak, J.S. Miller: Photodegradation kinetics of androgenic steroids boldenone and trenbolone in aqueous solution. J. Photochem. Photobiol., A, 212, 14-19,2010.
  • [103] P. Mazellier, J. Leverd: Transformation of 4-tert-octylphenol by UV radiation and by an H2O2 /UV process in aqueous solution. Photochem. Photobiol. Sci., 2, 946-953, 2003.
  • [104] D. Błędzka, D. Gryglik, J.S. Miller: Photodegradation of butylparaben in aqueous solutions by 254 nm irradiation. J. Photochem. Photobiol., A, 203, 131-136,2009.
  • [105] D. Błędzka, D. Gryglik, J.S. Miller: Photolytic degradation of 4-t-octylphenol in water solution. Environment Protection Engineering, 35, 235-247 2009.
  • [106] L. Chen, H. Zhou, Q. Deng: Photolysis of nonylphenol ethoxylates: The determination of the degradation kinetics and the intermediate products. Chemosphere, 68, 354-359, 2007.
  • [107] S. Sanches, M.T. Barreto-Crespo, V.J. Pereira: Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Res., 44, 1809-1818, 2010.
  • [108] J.R. Bolton, K.G. Linden: Standarizaton of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering-ASCE, 129(3). 209-215.2003.
  • [109] C. Wu, K.G. Linden: Degradation and byproduct formation of parathion in aqueous solutions by UV and UV/H2O2 treatment. Water Res., 42, 4780-4790, 2008.
  • [110] M. Neamţu, F.H. Frimmel: Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells. Water Res., 40, 3745-3750, 2006.
  • [111] P.-J. Chen, S.W. Kullman, D.E. Hinton, K.G. Linden: Comparison of polychromatic and monochromatic UV-based treatment of bisfphenol-A in water via toxicity assessments. Chemosphere, 68. 1041 -1049, 2007.
  • [112] M. Kuivikko.T. Kotiaho, K. Hartonen, A. Tanskanen, A.V. Vähätalo: Modeled direct photolytic decomposition of polybrominated diphenyl ethers in the Baltic Sea and the Atlantic Ocean. Environ. Sci. Technol., 41, 7016-7021, 2007.
  • [113] P.M. Bastos, J. Eriksson, A. Bergman: Photochemical decomposition of dissolved hydroxylated polybrominated diphenyl ethers under various aqueous conditions. Chemosphere, 77, 791-797, 2009.
  • [114] P. Wong-Wah-Chung, S. Rafqah, G. Voyard, M. Sarakha: Photochemical behaviour of triclosan in aqueous solutions: Kinetic and analytical studies. J. Photochem. Photobiol., A, 191, 201-208, 2007.
  • [115] G. Zhai, J. Liu, B. He, J. Zhang, Q. Zhou, G. Jiang: Ultraviolet degradation of methyltins: Elucidating the mechanism by identification of a detected new intermediary product and investigating the kinetics at various environmental conditions. Chemosphere, 72, 389-399, 2008.
  • [116] J.H. Baxendale, J.A. Wilson: Photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc., 53, 344-356, 1957.
  • [117] M. Dore: Chimie des oxidants et traitement des eaux. Lavoisier, Paris, 1989.
  • [118] R. Zellner, M. Exner, H. Herrmann: Absolute •OH quantum yield in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278-353 K. J. Atmos. Chem., 10, 411-425, 1990.
  • [119] P.B.L. Chang, T.M. Young: Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment. Water Res., 34, 2233-2240, 2000.
  • [120] I. Nicole, J. De Laat, M. Dore, J.P. Duguet, C. Bonnel: Utilisation du rayonnement ultraviolet dans le traitement des eaux; measure du flux photonique par actinometrie chimique au peroxyde d'hydrogene. Water Res., 24,157-168, 1990.
  • [121] E.M. Tace: Etude cinetique de la degradationde chloroethanes et de s-triazines en milleux aqueux par irradiation UV en absence et en presence de peroxyde d'hydrogene. Praca doktorska. Universite de Poitiers, Francja, 1992.
  • [122] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross: Critical reviewof rate constants for reactions of hydrated electron, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513-886, 1988.
  • [123] H.S. Christensen, H. Sehested, H. Corfitzan: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem., 86, 15-68, 1982.
  • [124] O. Legrini, E. Oliveros, A.M. Braun: Photochemical processes for water treatment. Chem. Rev., 93, 671-698, 1993.
  • [125] J. Mack, J.R. Bolton: Photochemistry of nitrate in aqueous solution: a review. J. Photochem. Photobiol., A, 128, 1-13, 1999.
  • [126] A. Hatipoglu, D. Vione, Y. Yalçin, C. Minero, Z. Çinar: Photo-oxidative degradation of toluene in aqueous media by hydroxyl radicals. J. Photochem. Photobiol., A, 215, 59-68, 2010.
  • [127] F.J. Beltran, G. Ovejero. J. Rivas: Oxidation of polynuclear aromatic hydrocarbons in water. 3. UV radiation combined with hydrogen peroxide. Ind. Eng. Chem. Res., 35, 883-890, 1996.
  • [128] S. Ledakowicz, J.S. Miller, D. Olejnik: Oxidation of PAHs in water solutions by ultraviolet radiation combined with hydrogen peroxide. Int. J. Photoenergy 1,55-60, 1999.
  • [129] J. Kochany, J.R. Bolton: Mechanism of photodegradation of aqueous organic pollutants. 1. EPR spin-trapping technique for the determination of OH radical rate constants in the photooxidation of chlorophenols following the photolysis of H2O2. J. Phys. Chem., 95, 5116-5120, 1991.
  • [130] A. Hirvonen, M. Trapido, J. Hentunen, J. Tarnanen: Formation of hydroxylated and dimeric intermediates during oxidation of chlorinated phenols in aqueous solution. Chemosphere, 41, 1211-1218, 2000.
  • [131] D. Błędzka, D. Gryglik, M. Olak, J.L. Gębicki, J.S. Miller: Degradation of n-butylparaben and 4-tert-octylophenol in H2O2/UV system. Radiat. Phys. Chem., 79, 409-416, 2010.
  • [132] C. Wu, K.G. Linden: Phototransformation of selected organophosphorus pesticides: Role of hydroxyl and carbonate radicals. Water Res., 44,3585-3594,2010.
  • [133] K. Li, D.R. Hokanson, J.C. Crittenden, R.R. Trussell, D. Minakata: Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: Effect of pretreatmaent options and light sources. Water Res., 42, 5045-5053, 2008.
  • [134] EJ. Rosenfeldt, K.G. Linden, S. Canonica, U. von Gunten: Comparison of the efficiency of OH radical formation during ozonation and advanced oxidation processes O3/H2O2, and UV/H2O2,. Water Res., 40, 3695-3704, 2006.
  • [135] E.J. Rosenfeldt, K.G. Linden: The ROH,UV concept to characterize and the model UV/H2O2 process in natural waters. Environ. Sci. Technol., 41,2548-2553, 2007.
  • [136] M. Elovitz, U. von Gunten: Hydroxyl radical/ozone ratios during the ozonation processes. I. The RCT, concept. Ozone Sci. Eng., 21, 239-260, 1999.
  • [137] J. Hoigné: Chemistry of aqueous ozone and transformation of pollutents by ozonation and advanced oxidation processes. W: The Handbook of Environmental Chemistry, Springer Verlag, Berlin, 1998.
  • [138] S.L. Murov, I. Carmichael, G.L. Hug: Handbook of Photochemistry, 2-nd ed. M. Dekker, 1993.
  • [139] A.M. Braun M-T. Maurette, E. Oliveros: Photochemical technology, Wiley, Chichester, 1991.
  • [140] W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Röder, J. Schnurpfeil: Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J. Porphyrins Phtalocyanines, 2, 145-158, 1998.
  • [141] D. Drozd, K. Szczubiałka, M. Nowakowska: Novel hybryd photosensitizers: Photoactive polimer- nanoclay. J. Photochem. Photobiol. A., 215,223-228,2010.
  • [142] S.M. Ribeiro, A.C. Serra, A.M.d'A. Rocha Gonsalves: Covalently immobilized porphyrins on silica modified structures as photooxidation catalysts. J. Mol. Catal. A: Chem., 326, 121-127, 2010.
  • [143] A.P. Schaap, A.L. Thayer, E.C. Blossey, D.C. Neckers: Polymer-based sensitizers for photooxidations. J. Am. Chem. Soc., 97, 3741-3746, 1975.
  • [144] D. Faust, K.-H. Funken, G. Horneck, B. Milow, J. Ortner, M. Sattlegger, M. Schäfer, C. Schmitz: Immobilized photosensitizers for solar photochemical applications. Solar Energy, 65(1), 71-74, 1999.
  • [145] J. Černy, M. Karásková, J. Rakušan, S. Nešpůrek: Reactive oxygen species produced by irradiation of some phthalocyanine derivatives. J. Photochem. Photobiol. A, 210, 82-88, 2010.
  • [146] X. Zhang, Y. Wang, L. Niu: Titanyl phthalocyanine and its soluble derivatives: Highly efficient photosensitizers for singlet oxygen production. J. Photochem. Photobiol., A, 209, 232-237, 2010.
  • [147] J. Lee, J.D. Fortner, J.B. Huges, J.-H. Kim: Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environ. Sci. Technol., 41, 2529-2535, 2007.
  • [148] M.C. DeRosa, R.J. Crutchley: Photosensitized singlet oxygen and its applications Coord. Chem. Rev., 233-234, 351-371, 2002.
  • [149] C.A. Robertson, D. Hawkins Evans, H. Abrahamse; Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 96, 1-8, 2009.
  • [150] K. Loponov, B. Goller, A. Moskalenko, D. Kovalov, A. Lapkin: Efficiency of porous silicon photosensitizer in the singlet oxygen-mediated oxidation of organic compounds. J. Photochem. Photobiol. A, 211, 74-77, 2010.
  • [151] O. Suchard, R. Kane, B.J. Roe, E. Zimmermann, C. Jung, P.A. Waske, J. Mattay, M. Oelgemöller: Photooxygenation of 1-naphthols: an environmentally friendly access to 1,4-naphthoquinones. Tetrahedron, 62, 1467-1473, 2006.
  • [152] A.T. Cooper, D.Y. Goswami: Evaluation of methylene blue and rose bengal for dye sensitized solar water treatment. J. Sol. Energy Eng., ASME, 124, 305-310,2002.
  • [153] F. Manjón, L. Villén, D. Garcia-Fresnadillo, G. Orellana: On the factors influencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen. Environ Sci. Technol., 42, 301-307, 2008.
  • [154] C.D. Clark, W.J. De Bruyn, J.G. Jones: Photochemical production of hydrogen peroxide in size-fractionated Southern California coastal waters. Chemosphere, 76,141-146,2009.
  • [155] M. Zhan, X. Yang, Q. Xian, L. Kong: Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere, 63, 378-386, 2006.
  • [156] A. Pajares, M. Bregliani, M.P. Montaña, S. Criado, W. Massad, J. Gianotti, I. Gutiérrez, N.A. García: Visible-light promoted photoprocesses on aqueous gallic acid in the presence of riboflavin. Kinetics and mechanism. J. Potochem. Photobiol., A, 209, 89-94, 2010.
  • [157] L. Shen, H.-F. Ji: The mechanisms of ROS-photogeneration by berberine, a natural isoquinoline alkaloid. J. Photochem. Photobiol., B, 99, 154-156, 2010.
  • [158] M. Diaz, M. Luiz, P. Alegretti, J. Furlong, F. Amat-Guerri, W. Massad, S. Criado, N.A. Garcia: Visible-light-mediated photodegradation of 17b-estradiol: Kinetics, mechanism and photoproducts. J. Photochem. Photobiol. A., 202, 221-227,2009.
  • [159] Y. Barbieri, W.A. Massad, D.J. Diaz, J. Sanz, F. Amat-Guerri, N.A. Garcia: Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: Kinetics, mechanism and photoproducts. Chemosphere, 73, 564-571, 2008.
  • [160] S.K. Han, P. Bilski, B. Karriker, R.H. Sik, C.F. Chignell: Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen. Environ. Sci. Technol., 42, 166-172,2008.
  • [161] J.S. Miller: Rose Bengal - sensitized photooxidation of 2-chlorophenol in water using solar simulated light. Water Res., 39, 412-422, 2005.
  • [162] D. Gryglik, J.S. Miller, S. Ledakowicz: Solar energy utilization in degradation of 2-chlorophenol by immobilized photosensitizers. Solar Energy 77(5),615-623,2004.
  • [163] D. Gryglik, J.S. Miller, S. Ledakowicz: Singlet molecular oxygen application for 2-chlorophenol removal. J. Hazard. Mater., 146, 502-507,, 2007.
  • [164] D. Gryglik, M. Lach, J.S. Miller: The aqueous photosensitized degradation of butylparaben. Photochem. Photobiol. Sci., 8, 549-555, 2009.
  • [165] D. Błędzka, M. Gmurek, M. Gryglik, M. Olak, J.S. Miller, S. Ledakowicz: Photodegradation and advanced oxidation of endocrine disrupters in aqueous solutions. Catal. Today, 151, 125-130, 2010.
  • [166] T. Jamroz, S. Ledakowicz, J.S. Miller, B. Sencio: Microbiological evaluation of toxicity of three polycyclic aromatic hdrocarbons and poducts of their decomposition. Environ. Toxicol., 18(3), 187-191, 2003.
  • [167] S. Steenken C.J. Warren, B.C. Gilbert: Generation of radical-cations from naphthalene and some derivatives, both by photoionizatio and reaction with SO4-: formation and reactions studied by laser flash photolysis. J. Chem. Soc. Perkin Trans., 2, 335-342, 1990.
  • [168] A. Hörmann, G. Manivannan, R. Pagni, M. Sigman, J. Wirz: Photooxidation of anthracene in aqueous solution. XV-th International Conference on Phtochemistry, Paris, France, 1991.
  • [169] T. Tuhkanen: Oxidation of organic compounds in water and waste water with the combination of hydrogen peroxide and UV radiation. Praca doktorska, University of Kuopio, Finlandia, 1994.
  • [170] F.J. Beltran, G. Ovejero, J.F. Garcia-Araya, J. Rivas: Oxidation of polynuclear aromatic hydrocarbons in water. 2. UV radiation and ozonation in the presence of UV radiation. Ind. Eng. Chem. Res., 34, 1607-1615, 1995.
  • [171] M. Hautaniemi, J. Kallas, R. Munter, M. Trapido, Y. Veressinina: Ozonation and advanced oxidation of polycyclic aromatic hydrocarbons - mathematical modelling. Julkaisu (LappeenrantaUniversity of Technology, Finland) 82, 1-37,1997.
  • [172] OECD: Guideline for testing chemicals. Phototransformation of Chemicals in Water - Direct and Indirect Photolysis. Draft document. August 2000.
  • [173] F.J. Rivas, F.J. Beltran, J. Frades, P. Buxeda: Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Res., 35, 387-396, 2001.
  • [174] B.H. Milosavljevic, J.A. LaVerne: Pulse radiolysis of aqueous thiocyanate solution. J. Phys. Chem. A., 109, 165-168, 2005.
  • [175] TOXNET US National Library of Medicine, Hazardous Substances Data Bank (HSDB): Butylparaben. Database available on TOXNET; http://toxnet.nlm.nih.gov/ Last revision date: 2007.10.11.
  • [176] J. De Laat, H. Gallard, S. Ancelin, B. Legube: Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2. Chemosphere 39, 2693-2706, 1999.
  • [177] H.D. Burrows, L.S. Ernestova, T.J. Kemp, Y.I. Skurlatov, A.P. Purmal, A.N. Yermakov: Kinetics and mechanism of photodegradation of chlorophenols. Prog. React. Kinet. 23, 145-207, 1998.
  • [178] J.M. Larkin, W.R. Donaldson, T.H. Foster, R.S. Knox: Reverse intersystem crossing from a triplet state of rose bengal populated by sequential 532-nm plus 1064-nm laser excitation. Chem. Phys. 244(2-3), 319-330, 1999.
  • [179] S.D.-M. Islam, O. Ito: Solvent effects on rates of photochemical reactions of rose bengal triplet state studied by nanosecond laser photolysis. J. Photochem. Photobiol., A, 123, 53-59, 1999.
  • [180] C.R. Lambert, I.E. Kochevar: Electron transfer quenching of the rose bengal triplet state. Photochem. Photobiol., 66(1), 15-25, 1997.
  • [181] P.G. Tratnyek, J. Hoigne: Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygen. Environ. Sci. Technol., 25(9), 1596-1604, 1991.
  • [182] E.A. Lissi, M.V. Encinas, E. Lemp, M.A. Rubio: Singlet oxygen O21Δg bimolecular processes. Solvent and compartmentalization effects. Chem. Rev., 93, 699-723,1993.
  • [183] M. Nowakowska, M. Kępczyński: Polymeric photosensitizers 2. Photosensitized oxidation of phenol in aqueous solution. J. Photochem. Photobiol., A, 116,251-256, 1998.
  • [184] R. Gerdes, D. Wöhrle, W. Spiller, G. Schneider, G. Schnurpfeil, G. Schulz-Elkoff: Photo-oxidation of phenol and monochlorophenols in oxygen-saturated aqueous solutions by different photosensitizers. J. Photochem. Photobiol., A, 111,65-74, 1997.
  • [185] K. Ozoemena, N. Kuznetsova, T Nyokong; Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metal-lophthalocyanines. J. Photochem. Photobiol., A, 139, 217-224, 2001.
  • [186] R. Schmidt: Influence of heavy atoms on the deactivation of singlet oxygen (1Δg) in solution. J. Am. Chem. Soc., 111(18), 6983-6987, 1989.
  • [187] F. Wilkinson, W.P. Helman, A.B. Ross: Quantum yields for the photosensitized formation of the lowest electrochemically excited singlet state of molecular oxygen in solution. J Phys. Chem. Ref. Data, 22, 113-262, 1993.
  • [188] T. Sehili, M.A. Malouki, K.E. Djebbar, P. Boule, J. Lemaire: Oxydation des chlorphenols photosensibilisee par le rose bengale. J. Soc. Alger. Chim. 6(1), 113-122, 1996.
  • [189] M. Mehrvar, W.A. Anderson, M. Moo-Young, P.M. Reilly: Non-linear parameter estimation for a dynamic model in photocatalytic reaction engineering. Chem. Eng. Sci., 55, 4885-4891, 2000.
  • [190] C.B. Almquisl, P. Biswas: A mechanistic aproach to modeling the effect of dissolved oxygen in photo-oxidation reactions on titanium dioxide in aqueous systems. Chem. Eng. Sci., 56, 3421-3430, 2001.
  • [191] G. Sagawe, R.J. Brandi, D. Bahnemanm, A.E. Cassano: Photocatalytic reactors for treating water pollution with solar illumination. I: A simplified analysis for batch reactors. Chem. Eng. Sci., 58, 2587-2599, 2003.
  • [192] E. Du, Y.X. Hang, L. Zheng; Photocatalytic degradation of dimethyl phthalate in aqueous TiO2 suspension: a modified Langmuir - Hinshelwood model. React. Kinet. Catal. Lett., 97, 83-90, 2009.
  • [193] R.G. Mortimer: Physical Chemistry, 2-nd ed. Academic Press, San Diego, 2000.
  • [194] K. Lang, J. Mosinger, D.M. Wagnerova: Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord. Chem Rev., 248, 321-350, 2004.
  • [195] T. Nyokong: Effects of substituents on the photochemical ans photophysical properties of main group metal phthalocyanines. Coord. Chern. Rev., 251, 1707-1722,2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0022-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.