PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Segmentacja tekstury obrazów z wykorzystaniem neuronowych sieci oscylacyjnych i metod statystycznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Image texture segmentation using oscillator networks and statistical methods
Języki publikacji
PL
Abstrakty
PL
Praca opisuje wyniki badań autora dotyczące segmentacji obrazów zawierających tekstury, ze szczególnym uwzględnieniem obrazów biomedycznych, zawierających przekroje ludzkich wewnętrznych narządów i tkanek. Ilościowa analiza tekstury, obok parametrów morfologicznych, stanowi istotne uzupełnienie informacji o badanej tkance. Zastosowanie komputerowych metod analizy tekstur pozwala m.in. na dokonanie automatycznej segmentacji obrazu, co ma duże znaczenie we wspomaganiu diagnozy medycznej przez zapewnienie jej większej obiektywności i powtarzalności. W pracy dokonano przeglądu metod segmentacji tekstur. W szczególności omówiono statystyczne metody analizy tekstur z wykorzystaniem losowych pól Markowa (MRF). Przedstawiono zaproponowaną przez autora zmodyfikowaną metodę łączącą elementy metody histogramów i kodowania, służącą do estymacji parametrów modelu MRF, zapewniającą dokładne estymaty tych parametrów przy skróceniu czasu obliczeń. Ponadto pokazano przykłady segmentacji i klasyfikacji tekstur z wykorzystaniem parametrów modeli MRF. Wykazano, że dla wybranej klasy tekstur biomedycznych parametry MRF zapewniają lepszą segmcntację w porównaniu do innych cech statystycznych. W pracy przedstawiono również metodę segmentacji tekstur z wykorzystaniem sieci synchronicznych oscylatorów (SSO) oraz uzyskane przez autora pracy wyniki segmentacji wybranych tekstur biomedycznych. Zaproponowano i przetestowano zestaw cech do opisu tekstur uzyskanych na podstawie optymalizowanej filtracji liniowej. Porównano metody segmentacji wykorzystujące SSO i wielowarstwowe sieci pcrccptronowe oraz oszacowano ich dokładność. Do tego celu wykorzystano obrazy optyczne oraz ultrasonograf i czne zawierające obiekty testowe. W pracy przedstawiono również algorytm detekcji granic tekstur oraz algorytmy realizujące operacje morfologiczne z wykorzystaniem SSO. Jedną z zalet sieci oscylatorów jest możliwość jej sprzętowej implementacji np. w postaci układu VLSI. W pracy zaprezentowano koncepcję oraz wstępną weryfikacje procesora analogowego do szybkiej segmentacji obrazów, który realizuje architekturę SSO.
EN
The dissertation summarizes Author's research in the field of image texture segmentation focusing on biomedical images. Currently, in medical diagnosis physicians very often deal wilh image cross-sections of internal human organs and tissues (obtained using e.g. MRI tomography). These images contain homogeneous regions representing image texture. Quantitative texture analysis along with morphological lissue parameters provides additional information about analyzed tissues. Application of computerized texture analysis methods among others allows for automatic image segmentation, which improves medical diagnosis providing its repeatability and objectivity. The dissertation contains a review of texture analysis methods. It focuses on statistical MRF models. The MRF parameter estimation method (mixed of coding and histogramming techniques) proposed by the Author was presented. It provides accurate parameter estimation with relatively short analysis time. Examples of texture classification and segmentation using this method are also described. It was demonstrated that for selected class of textures MRF parameters assure better segmentation results if compared to other statistical features. The dissertation presents also texture segmentation method based on synchronized oscillator network (SON) and segmentation results of sample biomedical images. The properties of SON were discussed and compared to multilayer percepiron (MP). widely used for image segmentation. The texture feature set based on optimized linear filtering was discussed and tested. The accuracy of described segmentation methods using SON and MP were evaluated using optical and ultrasound images with artificial test objects. Also, the SON based algorithms for texture boundary detection and morphological filtering proposed by the Author was presented and discussed. The oscillator network can be implemented as VLSI chip. The concept of analog processor for image segmentation implementing the SON architecture was discussed along with preliminary test results.
Rocznik
Tom
Strony
3--177
Opis fizyczny
Bibliogr. 193 poz.
Twórcy
  • Zakład Elektroniki Medycznej, Instytut Elektroniki Politechniki Łódzkiej
Bibliografia
  • Ahrens H., Läuter J., Wielowymiarowa analiza wariancji, PWN, Warszawa 1979.
  • Andrey P., Tarroux P., “Unsupervised Segmentation of Markov Random Field Modeled Textured Images Using Selectionists Relaxation”, IEEE Trans. Pattern Analysis and Machine Intelligence, 20, 3, 1998, 252-262.
  • Augusteijn M., “Texture Segmentation and Classification Using Neural Network Technology”, Applied Mathematics and Computer Science, 4, 1995, 353-370.
  • Ayala G., Domingo J., “Spatial Size Distributions: Applications to Shape and Texture Analysis”, IEEE Trans, on Pattern Analysis and Machine Intelligence, 23, 12, 2001, 1430-1442.
  • Bejček L., Goliáš J., Gratz P., Klusáček S., “Mechanical Resonance Method for Quality Evaluation of Peach Fruit”, Proc. of Euroconference Modem Analytical Methods for Food and Beverage Authentication (abstracts), Lednice, Czech Republic, 29-31 August 2002, 38.
  • Bello M., “A Combined Markov Random Field and Wave-Packet Transform- Based Approach for Image Segmentation”, IEEE Trans. Image Processing, 3, 6, 1994,834-846.
  • Bennett P., Khotanzad P., “Multispectral Random Field Models for Synthesis and Analysis of Color Images”, IEEE Trans. Pattern Analysis and Machine Intelligence, 20, 1, 1998, 327-332.
  • Besag J., “Nearest-neighbour systems and the auto-logistic models for binary data”, J. Royal Statist. Soc., series B, 34, 1972, 75-83.
  • Besag J., “On the Statistical Analysis on Dirty Pictures” J. R. Statist. Soc. B, 48, 3, 1986, 259-302.
  • Besag J., “Spatial interaction and the statistical analysis of lattice systems”, J. Royal Statist. Soc., series B, 36, 1974, 192-236.
  • Bigun J., du Buf J., ‘W-folded Symmetries by Complex Moments in Gabor Space and Their Application to Unsupervised Texture Segmentation”, IEEE Trans. Pattern Analysis and Machine Intelligence, 16, 1, 1994, 80-87.
  • Bleck J., Ranft U., Gebel M., Hecker H., Westhoff-Bleck M., Thiesemann C., Wagner S., Manns M., „Random Field Models in the Textural Analysis of Ultrasonic Images of the Liver“, IEEE Trans, on. Medical Imaging, 15, 6, 1996, 796-801.
  • Borges C., “On the Estimation of Markov Random Field Parameter”, IEEE Trans. Pattern Analysis and Machine Intelligence, 21, 3, 1999, 216-224.
  • Bosch J, Mitchell S, Lelieveldt B, Nijland F, Kamp O, Sonka M, Reiber J. „Automatic Segmentation of Echocardiographic Sequences by Active Appearance Model”, IEEE Trans. Med. Imag. 21, 11, 2002, 1374-1383.
  • Bovik A., Clark M., Giesler W., “Multichannel Texture Analysis Using Localized Spatial Filters”, IEEE Trans. Pattern Analysis and Machine Intelligence, 12, 1990, 55-73.
  • Brady M., Xie Z-Y., “Feature Selection for Texture Segmentation”, in Advances in Image Understanding, K. Bowyer and N. Ahuja (Eds.), IEEE Computer Society Press, 1996.
  • Brodatz P., “Textures - A Photographic Album for Artists and Designers”, Dover, 1966.
  • Brown M., McNitt-Gray M., Mankovich N., Goldin J., Hiller J., Wilson L., Aberle D., “Method for Segmentation Chest CT Image Data Using an Anatomical Model: Preliminary Results”, IEEE Trans, on. Medical Imaging, 16, 6, 1997, 828-839.
  • Bruzzone P., Roli F., Serpico S., “Structured Neural Networks for Signal Classification”, Signal Processing, 64, 1998, 271-290.
  • Campisi P., Neri A., Scarano G., “Reduced Complexity and Reproduction of Colored Textures”, IEEE Trans, on Image Processing, 9, 3, 2000, 510-518.
  • Carreira J., Cabello D., Mosquerda D., Penedo M., Pardo J., “Knowledge-Based Segmentation of Medical Images”, Signal Processing VII: Theories and Applications, 1994, 868-872.
  • Çesmeli E., Wang D., “Motion segmentation Based on Motion/Brightness Integration and Oscillatory Correlation”, IEEE Trans, on Neural Networks, 11, 4, 2000, 935-947.
  • Çesmeli E., Wang D., “Texture Segmentation Using Gaussian-Markov Random Fields and Neural Oscillator Networks”, IEEE Trans, on Neural Networks, 12, 2, 2001, 394-404.
  • Chaudhuri B., Sarkar N., “Texture Segmentation Using Fractal Dimension”, IEEE Trans. Pattern Analysis and Machine Intelligence, 17, 1, 1995, 72-77.
  • Chellappa R., Chatterjee S., “Classification of Textures Using Gaussian Markov Random Fields", IEEE Trans. Acoustic, Speech and Signal Processing, 33, 4, 1985, 959-963.
  • Chellappa R., Chatterjee S., Bagdazian R., “Texture Synthesis and Compression Using Gaussian-Markov Random Field Models, IEEE Trans, on Systems, Man, and Cyber., 15, 2, 1985, 298-303.
  • Chen C., Chen L., “Cellular neural network architecture for Gibbs random-field- based image segmentation”, Journal of Electronic Imaging, 7, 1, 1998, 45-51.
  • Chen C-С., Daponte J., Fox M., “Fractal Feature Analysis and Classification in Medical Imaging”, IEEE Trans. Medical Imaging, 8, 2, 1990, 133-142.
  • Chen E., Chung E., Chen E., Tsai H., Chang C., “An Automatic Diagnostic System for CT Liver Image Classification”, IEEE Trans, on Biomedical Engineering, 45, 6, 1998, 783-794.
  • Chen J-L., Kundu A., “Unsupervised Texture Segmentation Using Multichannel Decomposition and Hidden Markov Models”, IEEE Trans. Image Processing, 4, 5, 1995, 603-619.
  • Chen K., Wang D., “A dynamically coupled neural oscillator network for image segmentation”, Neural Networks, 15, 2002, 423-439.
  • Chen K., Wang D., “Perceiving Geometric Patterns: From Spirals to Inside- Outside Relations”, IEEE Trans, on Neural Networks, 12, 5, 2001, 1084-1102.
  • Chen K., Wang D., Liu X., „Weight Adaptation and Oscillatory Correlation for Image Segmentation“, 11, 5, 2000, 1106-1123.
  • Chen P., Pavlidis T., “Segmentation by Texture Using a Co-Occurrence Matrix and a Split-and Merge Algorithm”, CG1P, 10, 1979, 172-182.
  • Chen Y-Q., Nixon M., Thomas D., “Statistical Geometrical Features for Texture Classification”, Pattern Recognition, 28, 4, 1995, 537-552.
  • Choi H., Baraniuk R., “Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models”, IEEE Trans, on Image Processing, 10, 9, 2001, 1309- 1321.
  • Choi H., Haynor D., Kim Y., “Partial Volume Tissue Classification of Multichannel Magnetic Resonance Images - A Mixed Model”, IEEE Trans. Image Processing, 10, 3, 1991, 395-407.
  • Choi S., Lee J., Kim J., Kim M., “Volumetric Object Reconstruction Using the 3D-MRF Model-Based Segmentation”, IEEE Trans, on. Medical Imaging, 16, 6, 1997,887-892.
  • Cichy M., Materka A., Tuliszkiewicz J., “Computerised Analysis of X-ray Images For Early Detection of Osteoporotic Changes in the Bone”, Proc. Conf. Information Technology in Medicine TIM ‘97, Jaszowiec, Poland, 53-61, 1997.
  • Cichy P., Analiza tekstury obrazów cyfrowych - zastosowanie do wybranej klasy obrazów biomedycznych, rozprawa doktorska, Politechnika Łódzka, 2001.
  • Clark M., Hall L., Goldgof D., Velthuitzen D., Murtagh F., Silbiger M., “Automatic Tumor Segmentation Using Knowledge-Based Techniques”, IEEE Trans, on. Medical Imaging, 17, 2, 1998, 187-201.
  • Cohen F., Cooper D., “Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Field”, IEEE Trans. Pattern Analysis and Machine Intelligence, 9, 2, 1987, 195-219.
  • Cohen F., Fan Z., “Maximum Likelihood Unsupervised Textured Image Segmentation”, Graphical Models and Image Processing, 54, 3, 1992, 239-251.
  • Cohen F., Fan Z., Patel M., “Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 13, 2, 192-202, 1991.
  • Comer M., Delp E., “Segmentation of Textured Images Using a Multiresolution Gaussian Autoregressive Models”, IEEE Trans, on Image Processing, 8, 3, 1999, 408-420.
  • Cosp J., Madrenas J., “Scene Segmentation Using Neuromorphic Oscillatory Networks”, IEEE Transactions on Neural Networks, 14, 2003, 1278-1296.
  • COST B11 http://www.eletel.p.lodz.pl/cost/. 2002.
  • Cross G., Jain A., “Markov Random Field Texture Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 5, 1, 1983, 25-39.
  • Daugman J., “Uncertainty Relation for Resolution in Space, Spatial Frequency and Orientation Optimized by Two-Dimensional Visual Cortical Filters”, Journal of the Optical Society of America, 2, 1985, 1160-1169.
  • Derin H., Elliot H., “Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields”, IEEE Trans. Pattern Analysis and Machine Intelligence, 9, 1, 1987, 39-55.
  • [a]Descombes X., Sigelle M., Preteux F., „Estimating Gaussian Markov Random Field Parameters in a Nonstationary Framework: Application to Remote Sensing Imaging”, IEEE Trans, on Image Processing, 8, 4, 1999, 490-503.
  • [b]Descombes X., Morris X., Zerubia X., Berthod M., “Estimation of Markov Random Field Prior Parameters Using Markov Chain Monte Carlo Maximum Likelihood”, IEEE Trans, on Image Processing, 8, 7, 1999, 954-963.
  • Doh Z-Y., Pang R-H., “Segmentation of Statistical Texture Images Using the Metric Space Theory”, Signal Processing, 53, 1996, 27-34.
  • Dubuisson M-Р., Dubes R., “Efficacy of Fractal Features in Segmenting Images of Natural Textures”, Pattern Recognition Letters, 15, 1994, 419-431.
  • Dunn D., Higgins W., “Optimal Gabor Filters for Texture Segmentation”, IEEE Trans. Image Processing, 4, 7, 1995, 947-964.
  • Eck D., “A Network of Relaxation Oscillators that Finds Downbeats in Rhythms”, Psychological Research, 1, 66, 2002, 18-25.
  • Fernandez D., Lemos de Sequeira M., Navaux P., “Segmentation of Fetal Echocardiographic Images Using Self-Organizing Maps and Oscillatory Neural Networks”, Proc. ofSIARP 2001, Florianopolis, Brasil, 2001, 55-60.
  • Freeborough P., Fox N., Kitney R., “Interactive Algorithms for the Segmentation and Quantitation of 3-D MRI Brain Scans”, Computer Methods and Programs in Biomedicine 53, 1997, 15-25.
  • Freeman J., Skapura D., ’’Neural Networks - Algorithms, Applications and Programming Techniques”, Addison-Wesley, 1991.
  • Fukunaga K., Introduction to Statistical Pattern Recognition, Academic Press, 1991.
  • Gailinari P., Thiria S., Badran F., Fogelman-Soulie F., “On the Relations Between Discriminant Analysis and Multilayer Perceptrons”, Neural Networks, 4, 1991,349-360.
  • Geman S., Geman D., “Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images”, IEEE Trans. Pattern Analysis and Machine Intelligence, 6, 11, 1984, 721-741.
  • Goldberg-Zimring D., Achiron A., Miron S., Faibel M., Azhari H., “Automated Detection and Characterization of Multiple Sclerosis Lesions in Brain MR Images”, Magnetic Resonance Imaging, 16, 3, 1998, 311-318.
  • Gomberg B., Saha P., Song H., Hwang S., Wehrli F., “Topological Analysis of Trabecular Bone MR Images”, IEEE Trans, on Medical Imaging, 19, 3, 2000, 166-174.
  • Gonzalez R., Woods R., “Digital Image Processing", Addison-Wesley, 1993
  • Gürelli M., Onural L., “On a Parameter Estimation Method for Gibbs-Markov Fields”, IEEE Trans. Pattern Analysis and Machine Intelligence, 16, 4, 1994, 424-430.
  • Haralick R., “Statistical and Structural Approaches to Texture”, Proc. IEEE, 67, 5, 1979, 786-804.
  • Haralick R., Shanmugan K., Dinstain I. , “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, 3, 6, 1973, 610-622.
  • Hassner M., Sklansky J., “The Use of Markov Random Fields as Models of Texture”, Image Modelling, A. Rosenfeld (Ed.), Academic Press, 1981, 185-198.
  • Hecht-Nielsen R., Neurocomputing, Addison-Wesley, 1990.
  • Held K., Kops E., Krause B., Wells W., Kikinis R., Muller-Gartner H., „Markov Random Field Segmentation of Brain MR Images“, IEEE Trans, on Medical Imaging, 16, 6, 1997, 878-886.
  • Hill P., Canagarajah N., Bull D., “Image Segmentation Using a Texture Gradient Based Watershed Transform”, IEEE Trans, on Image Proc., 12, 12, 2003, 1618- 1633.
  • Hofmann T., Puzicha T., Buhmann T., „Unsupervised Texture Segmentation in a Deterministic Annealing Framework”, IEEE Trans, on PAM1, 20, 8, 1998, 803- 818.
  • Hsiao J., Sawchuk A., “Supervised Textured Image Segmentation Using Feature Smoothing and Probabilistic Relaxation Techniques”, IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 12, 1989, 1279-1292.
  • Hu Y., Hwang J. (Ed.) Handbook of Neural Network Signal Processing, , CRC Press, 2002.
  • Ilow J., Leung H., “Self-Similar Texture Modeling Using FARIMA Process with applications to Satellite Images”, IEEE Trans, on Image Processing, 10, 5, 2001, 792-797.
  • Jain A., Fundamentals of Digital Image Processing, Prentice Hall, 1989.
  • Jain A., Farrokhnia F., “Unsupervised Texture Segmentation Using Gabor Filters”, Pattern Recognition, 24, 12, 1991, 1167-1186.
  • Jain A., Karu K., “Learning Texture Discrimination Masks”, IEEE Trans. Pattern Analysis and Machine Intelligence, 18, 2, 1996, 195-205.
  • Jirak D., Dezertová M., Taimr P., Hajek P., “Texture Analysis of Human Liver”, Journal of MRI, 15, 2002, 68-74.
  • Judd D., McKinley P., Jain A., “Large-Scale Parallel Data Clustering”, IEEE Trans, on Pattern Analysis and Machine Intelligence, 20, 8, 1998, 871-876.
  • Julesz B., “Experiments in the Visual Perception of Texture”, Scientific American, 232, 4, 1975, 34-43.
  • Kacprzak T., Slot K., Sieci neuronowe komórkowe, PWN, Warszawa-Łódź 1995.
  • Kaplan L., “Extended Fractal Analysis for Texture Classification and Segmentation”, IEEE Trans, on Image Processing, 8, 11, 1999, 1572-1582.
  • Kaplan L., Kuo C-С., “Texture Roughness Analysis and Synthesis via Extended Self-Similar (ESS) Model”, IEEE Trans. Pattern Analysis and Machine Intelligence, 17, 11, 1995, 1043-1056.
  • Kashyap R., Chellappa R., “Estimation and Choice of Neighbors in Spatial- Interaction Model of Images, IEEE Trans, on Inf. Theory, 29, 1, 1983, 60-72.
  • Kato Z., Berthod M., Zerubia J., “A Hierarhical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification”, Graphical Models and Image Processing, 58, 1, 1996, 18-37
  • Kennedy D., Filipek P., Cavines V., “Anatomie Segmentation and Volumetrie Calculations in Nuclear Magnetic Resonance Imaging”, IEEE Trans. Medical Imaging, 8, 1, 1989, 1-7.
  • Kerfoot L, Bresler Y., “Theoretical Analysis of Multispectral Image Segmentation Criteria”, IEEE Trans, on Image Processing, 8, 6, 1999, 798-820.
  • Kervrann C., Heitz F., “A Markov Random Field Model-Based Approach to Unsupervised Texture Segmentation Using Local and Global Spatial Statistics”, IEEE Trans. Image Processing, 4, 6, 1995, 856-862.
  • Khotanzad A., Boufara A., “Image Segmentation by a Parallel Non-parametric Histogram Based Clustering Algorithm”, Pattern Recognition, 23, 9, 1990, 961- 973.
  • Koss Y., Newman F., Johnson T., Kirch D., “Abdominal Organ Segmentation Using Texture Transforms and a Hopfield Neural Network”, IEEE Trans, on Medical Imaging, 18, 7, 1999, 640-648.
  • Kovalev H., Kruggel F., Gertz H., Cramon Y., “Three-Dimensional Texture Analysis of MRI Brain Datasets”, IEEE Trans, on Biomedical Imaging, 20, 5, 2001, 424-433.
  • Kovalev V., Petrou M., “Multidimensional Co-Occurrence Matrices for Object Recognition and Matching”, GMIP, 58, 3, 1996, 187-197.
  • Kowalski J., Kacprzak T., “Analysis and Designing of Cellular Neural Networks Based on Transconductance Amplifier- OTA and Multiple Input Transconductance Amplifier - MIOTA”, Electronics and Telecommunications Quarterly, 47, 1, PWN, 2001, 87-119.
  • Kremkau F. W., Taylor K. J. W., “Artifacts in Ultrasound Imaging”, J. Ultrasound Med., 6, 1986, 227-237.
  • Krishnamachari S., Chellappa S., “Multiresolution Gauss-Markov Random Field Models for Texture Segmentation”, IEEE Trans. Image Processing, 6, 2, 1997, 251-267.
  • KS 300 Imaging System, Users manual, Carl Zeiss Vision GmbH, Germany 2001.
  • Kudrewicz J., Fr oktale i chaos, WNT, Warszawa 1993.
  • Laine A., Fan J., “Texture Classification by Wavelet Packet Signatures”, IEEE Trans. Pattern Analysis and Machine Intelligence, 15, 11, 1993, 1186-1191.
  • Lerski R., Straughan R., Shad L., Boyce D., Bluml S., Zuna I., “MR Image Texture Analysis - An Approach to Tissue Characterisation”, Magnetic Resonance Imaging, 11, 1993, 873-887.
  • Li H., Deklerck R., De Cuyper B., Hermanus A., Nyssen E., Comelis J., “Object Recognition in Brain CT-Scans: Knowledge-Based Fusion of Data from Multiple Feature Extractors”, IEEE Trans, on. Medical Imaging, 14, 2, 1995, 212-229.
  • Li H., Kallergi M., Clark L., Jain V., “Markov Random Field Model for Tumor Detection in Digital Mammography”, IEEE Trans, on Medical Imaging, 14, 3, 1995, 565-576.
  • Li H., Liu K., Lo S., Fractal Modeling and Segmentation for the Enhancement of the Microcalcifications in Digitized Mammograms, Trans, on. Medical Imaging, 16, 6, 1997, 785-797.
  • Liang Z., MacFall J., Harrington D., „Parameter Estimation and Tissue Segmentation from Multispectral MR Images“, IEEE Trans, on Medical Imaging, 13, 3, 1994, 441-449.
  • Linsay P., Wang D., “Fast numerical integration of relaxation oscillator networks based on singular limit solutions”, IEEE Trans, on Neural Networks, 9, 3, 1998, 523-532.
  • Liu X., Chen K., Wang D., “Extraction of Hydrographic Regions from Remote Sensing Images Using an Oscillator Network with Weight Adaptation”, IEEE Trans, on Geosciences and Remote Sensing, 39, 1, 2001, 207-211.
  • Lu C., Chung C., Chen C., “Unsupervised Texture Segmentation via Wavelet Transform”, Pattern Recognition, 30, 5, 729-742, 1997.
  • Lundervold A., Storvik G., “Segmentation of Brain Parenchyma and Cerebrospinal Fluid in Multispectral Magnetic Resonance Images”, IEEE Trans, on. Medical Imaging, 14, 2, 1995, 339-349.
  • Ma W., Manjunath B., “EdgeFlow: A Technique for Boundary Detection and Image Segmentation”, IEEE on Image Processing, 9, 8, 2000, 1375-1388.
  • Madeja Z., “Quantitative methods of image analysis in molecular genetics”, Post. Biol. Korn., 24, 1997, 87-100.
  • Majumdar I., Weinstein R., Prasad R., “Application of fractal geometry techniques to the study of trabecular bone”, Medical Physics, 20, 6 , 1993, 142- 148.
  • Mallat S., “Multifrequency Channel Decomposition of Images and Wavelet Models”, IEEE Trans. Acoustic, Speech and Signal Processing, 37, 12, 1989, 2091-2110.
  • Manjunath B., Chellappa R., “Unsupervised Texture Segmentation Using Markov Random Fields”, IEEE Trans. Pattern Analysis and Machine Intelligence, 13, 5, 1991, 478-482.
  • Manjunath B., Chellappa R., “A Unified Approach to Boundary Perception: Edges, Textures and Illusory Contours”, IEEE Trans, on Neural Networks, 4, 1, 1993,96-108.
  • Manjunath В., Simchony T., Chellappa R., “Stochastic and Deterministic Networks for Texture Segmentation”, IEEE Trans. Acoustics, Speech and Signal Processing, 38, 6, 1990, 1039-1049.
  • Mao J., Jain A., “Artificial Neural Networks for Feature Extraction and Multivariate Data Projection”, IEEE Trans, on Neural Networks, 6, 2, 1995, 296-316.
  • Mao J., Jain A., “Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models”, Pattern Recognition, 25, 2, 1992, 173- 188.
  • Materka A.(red.), Elementy cyfrowego przetwarzania obrazu, PWN 1991.
  • Materka A., “Pascal routine for multivariable function minimisation using a direct-search modified Davies-Swann-Campey method”, Technical University of Łódź, Institute of Electronics, Research Report DS1/1998/AM, marzec 1998.
  • [a] Materka A., Cichy P, Tuliszkiewicz J, “Texture Analysis of X-Ray Images for Detection of Changes in Bone Mass and Structure” Texture Analysis in Machine Vision, Series in Machine Perception & Artificial Intelligence, 40, M. K. Pietikäinen (Ed.), World Scientific, Singapore, 2000, 189-195.
  • Materka A., MaZda Users Manual, https://www.eletel.p.lodz.pl/merchant/mazda/orderl_pl.epl, 2002.
  • Matlab, Image Processing Toolbox, User’s Guide, The Math Works, Inc., 1997.
  • McGunnigle G., Chantler M., “Evaluating Kube and Pentland’s Fractal Imaging Models” IEEE Trans, on Image Processing, 10,4, 2001, 534-542.
  • Mignotte M., Collet C., Perez P., Bouthemy P., “Sonar Image Segmentation Using an Unsupervised Hierarchical MRF Model”, IEEE Trans, on Image Processing, 9, 7, 2000, 1216-1231.
  • Modestino J., Zhang J., “A Markov Random Field Model-Base Approach to Image Interpretation”, IEEE Trans, on Pattern Analysis and Machine Intelligence, 14, 6, 1992, 606-615.
  • Mojsilovic P., Popovic M., Rackov D., “On the Selection of Optimal Wavelet Basis for Texture Characterisation”, IEEE Trans, on Image Processing, 9, 12, 2000, 2043-2050.
  • Mucciardi A., Gose E., “A comparison of Seven Techniques for Choosing Subsets of Patter Recognition Properties”, IEEE Trans, on Computers, c-20, 9, 1971, 1023-1031.
  • Mudigonda N., Rangayyan R., Desautels L., “Detection of Breast Masses in Mammograms by Density Slicing and Texture Flow-Field Analysis”, IEEE Trans, on Biomedical Imaging, 20, 12, 2001, 1215-1227.
  • Osowski S., Sieci neuronowe w ujęciu algorytmicznym, WNT, 1996.
  • Paget R., Longstaff D., “Texture Synthesis via a Noncausal Nonparametric Multiscale Markov Random Field, IEEE Trans, on Image Proc., 7, 6, 1998, 925- 931.
  • Panjwani D., Healey G., “Markov Random Field Models for Unsupervised Segmentation of Textured Color Images”, IEEE Trans. Pattern Analysis and Machine Intelligence, 17, 11, 1995, 939-954.
  • Pardo-Lopez D., Cabello D., Heras D., Couceiro J., “A Markov Random Field Model for Bony Tissue Classification”, Computerized Medical Imaging and Graphics, 22, 1998, 169-178.
  • Pavlidis T., Grafika i przetwarzanie obrazów , WNT, Warszawa 1987.
  • Pavlopoulos D., Kyriakou E., Koutsouris D., Blekas K., Stafylopatis A., Zoumpoulis P., “Fuzzy Neural Network-Based Texture Analysis of Ultrasonic Images”, IEEE Engineering in Medicine and Biology, January/February 2000, 39-47.
  • Pełczyński P., “Cellular Neural Network for Segmentation of Textured Images”, Image Processing & Communications, 3, No. 3-4, 1997, 3-8.
  • Pentland A., “Fractal-Based Description of Natural Scenes”, IEEE Trans. Pattern Analysis and Machine Intelligence, 6, 6, 1984, 661-674.
  • Petrick N., Chan N., Wei D., Sahiner B., Helvie M., Adler D., “Automated Detection of Breast Masses on Mammograms Using Adaptive Contrast Enhancement and Texture Classification”, Med. Phys., 23, 10, 1996, 1685-1696.
  • Petrou M., “3D texture analysis for medical applications”, COST B ll Workshop on Tissue Texture in MRI, invited lecture, Bergen, Norway, May 2-4, 2002.
  • Pietikäinen M., Rosenfeld A., “Experimental with texture Classification Using Averages of Local Pattern Matches”, IEEE Trans, on Systems, Man, and Cybernetics, SMC-13, 1983,421-426.
  • Porter R., Canagarajah N., “A Robust Automatic Clustering Scheme for Image Segmentation Using Wavelets”, IEEE Trans. Image Processing, 5, 4, 1996, 662- 665.
  • Povlow B., Dunn S., “Texture Classification Using Noncausal Hidden Markov Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 17, 10, 1995, 1010-1014.
  • Pratt W., Digital Image Processing, Wiley, 1991.
  • Press N., Teukolsky S., Vetterling W., Flannery B., “Numerical Recipes in C”, Cambridge University Press, 1996.
  • Raghu P., Yegnanarayana B., “Supervised Texture Classification Using a Probabilistic Neural Network and Constraint Satisfaction Model”, IEEE Trans, on Neural networks, 9 3, 1998, 516-522.
  • Rajapakse J., Giedd J., Rapoport J., „Statistical Approach to Segmentation of Single-Channel Cerebral MR Images”, IEEE Trans, on Medical Imaging, 16, 2, 1997, 176-186.
  • [a]Randen T., Husoy J., “Texture Segmentation Using Filters with Optimized Energy Separation”, IEEE Trans, on Image Processing, 8, 4, 1999, 571-582.
  • [b]Randen T., Husoy J., “Filtering for Texture Classification: A Comparative Study”, IEEE on Pattern Analysis and Machine Intelligence, 21, 4, 1999, 291- 310.
  • Reddick W., Glass W., Cook E., Elkin T., Deaton R., “Automated Segmentation and Classification of Multispectral Magnetic Resonance Images of Brain Using Artificial Neural Networks”, IEEE Trans, on. Medical Imaging, 16, 6, 1997, 911-918.
  • Reed T., Wechsler H., “Segmentation of Textured Images and Gestalt Organization Using Spatial/Spatial-Frequency Representations”, IEEE Trans. Pattern Analysis and Machine Intelligence, 12, 1,1990,1-12.
  • Reed T., Wechsler H., Werman M., “Texture Segmentation Using a Diffusion Region Growing Technique”, Pattern Recognition, 23, 9, 1990, 953-990
  • Rhouma M., Frigui H., “Self-Organization of Pulse Coupled Oscillators With Application to Clustering”, IEEE Trans, on PAMI, 23, 2, 2001, 180-195.
  • Rosenfeld A., Weszka J., “Picture Recognition” in Digital Pattern Recognition, K. Fu (Ed.), Springer-Verlag, 1980, 135-166.
  • Rosenfeld А.,. Kak A, Digital Picture Processing, vol. 1, Academic Press, 1982.
  • Saeed N., “Magnetic resonance image segmentation using pattern recognition, and applied to image registration and quantitation”, NMR in Biomedicine, 11, 1998,157-167.
  • Sarkar R., Sharma K., Sonak R., “A New Approach for Subset 2-D AR Model Identification for Describing Textures”, IEEE Trans. Image Processing, 6, 3, 1997,407-413.
  • Schenone A., Firenze F., Acquarone F., Gambarco F., Massuli F., Andreucci F., “Segmentation od Multivariate Medical Images via Unsupervised Clustering with Adaptive Resolution”, Computerized Medical Imaging and Graphics, 20, 3, 1996, 119-129.
  • Schürmann J., Pattern Classification, John Wiley & Sons, 1996.
  • Serra J., Image Analysis and Mathematical Morphology, Academic Press, 1982.
  • Shareef N., Wang D., Yagel R., “Segmentation of Medical Images Using LEGION”, IEEE Trans. On Med. Imaging, 18, 1, 1999, 74-91.
  • Ślot K., Sieci neuronowe komórkowe: efektywne narzędzia przetwarzania informacji obrazowej, Zeszyty Naukowe Politechniki Łódzkiej, 819, Łódź 1999.
  • Speis A., Healey G., “An Analytical and Experimental Study of the Performance of Markov Random Fields Applied to Textured Images Using Small Samples”, IEEE Trans. Image Processing, 5, 3, 1996, 447-458.
  • Strang G., Nguyen G., Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.
  • Sukissian L., Kollias S., Boutalis Y., “Adaptive Classification of Textured Images Using Linear Prediction and Neural Networks”, Signal Processing, 36, 1994, 209-232.
  • Szirnai T., Csapodi T., “Texture Classification and Segmentation by Cellular Neural Networks Using Genetic Algorithms”, Computer Vision and Image Understanding, 71, 3, 1998, 255-270.
  • Tadeusiewicz R., Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa 1993.
  • Terman D., Wang D., “Global competition and local cooperation in a network of neural oscillators”, Physica D, 81, 1995, 148 - 176.
  • Thybo A., Szczypiński P., Karlsson A., Dpnstrup S., Stpdkilde-Jprgensen H., Andersen H., “Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods”, J. Food Eng, 2003, J.Food Eng, 61, 1, 2004, 91-100.
  • Tian B., Azimi-Sadjadi M., “Comparison of two Different PNN Training Approaches for Satellite Cloud Data Classification”, IEEE Trans, on Neural networks, 12, 1, 2001, 164-168.
  • Tian B., Shaikh M., Azimi-Sadjadi M., Vonder T., Reinke D., “A Study of Cloud Classification with Neural Networks Using Spectral and Textural Features”, IEEE Trans, on Neural Networks, 10, 1, 1999, 138-151.
  • Tuceryan M., Jain A., “Texture Segmentation Using Voronoi Polygons”, IEEE Trans, on Pattern Analysis and Machine Intelligence, 12, 2, 1990, 211-216.
  • Valkealahti D., Oja E., “Reduced Multidimensional Co-Occurrence Histograms in Texture Classification”, IEEE Trans. Pattern Analysis and Machine Intelligence, 20, 1, 1998, 90-94.
  • Van de Wouwer G., Scheunders P., Van Dyck D., “Statistical Texture Characterization from Discrete Wavelet Representation”, IEEE Trans, on Image Processing, 8, 4, 1999, 592-598.
  • Vittitoe N., Vargas-Voracek N., Floyd C., “Identifications of Lung Regions in Chest Radiograms using Markov Random Field Modelling”, Med. Phys., 25, 6, 1998, 976-985.
  • von der Malsburg C., “The What and Why of Binding: The Modeler’s Perspective”, Neuron, 24, 1999, 95-104.
  • von der Malsburg C., Buhmann J., “Sensory segmentation with coupled neural oscillators”, Biological Cybernetics, 67, 1992, 233-242.
  • Wang D., “Emergent Synchrony in Locally Coupled Neural Oscillators”, IEEE Trans, on Neural Networks, 6, 4, 1995, 941 - 948.
  • Wang D., “Relaxation Oscillators and Networks”, Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley & Sons, 18, 1999, 396-405.
  • Wang D., Terman D., “Locally excitatory globally inhibitory oscillators network”, IEEE Trans, on Neural Networks, 6, 1, 1995, 283-286.
  • Wang G., Terman D., “Image segmentation based on oscillatory correlation”, Neural Computation, 9, 1997, 805-836.
  • Wang J., Naghdy G., Ogunbona G., „Wavelet-based feature-adaptive adaptive resonance theory neural network for texture identification”, Journal of Electronic Imaging, 6, 3, 1997, 329-336. –
  • Weszka J., Deya C., Rosenfeld A., “A Comparative Study of Texture Measures for Terrain Classification”, IEEE Trans. System, Man and Cybernetics, 6, 1976, 269-285.
  • Won C., Derin H., “Unsupervised Segmentation of Noisy and Textured Images Using Markov Random Fields”, Graphical Models and Image Processing, 54, 4, 1992, 308-328.
  • Yhann S., Young T., “Boundary Localization in Texture Segmentation”, IEEE Trans. Image Processing, 4, 6, 1995, 849-856.
  • Yin H., Allinson H., “Unsupervised Segmentation of textured Images Using a Hierarchical Neural Structure”, Electronics Letters, 30, 22, 1994, 1842-1843.
  • Younes E., “Synchronous Random Fields and Image Restoration”, IEEE Trans. Pattern Analysis and Machine Intelligence, 20, 4, 1998, 380-390.
  • Yu O., Mauss Y., Namer I., Chambron J., “Existence of Contralateral Abnormalities Revealed by Texture Analysis in Unilateral Intractable Hippocampal Epilepsy”, Magnetic Resonance Imaging, 19, 10, 2001, 1305- 1310.
  • Yu O., Mauss Y., Zöllner G., Namer L, Chambron J., “Distinct Patterns of Active and Non-Active Plaques Using Texture Analysis on Brain NMR Images in Multiple Sclerosis Patients: Preliminary Results”, Magnetic Resonance Imaging, 17,9,1999, 1261-1267.
  • Yu S., Guan L., “A CAD System for the Automatic Detection of Clustered Microcalcifications in Digitized Mammogram Films”, IEEE Trans, on Medical Imaging, 19, 2, 2000, 115-126.
  • Zadeh H., Windham J., Peck D., Yagle A., “A Comparative Study of Several Transformation for Enhancement and Segmentation of Magnetic Resonance Image Scene Sequences”, IEEE Trans, on Medical Imaging, 11, 3, 1992, 302- 318.
  • Zhang C., Wang D., “Image segmentation by multigrid Markov random field optimization and perceptual considerations”, Journal of Electronic Imaging, 7, 1, 1998, 52-60.
  • Zhang Y., Brady M., Smith S., “Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm”, IEEE Trans, on Medical Imaging, 20, 1, 2001, 45-57.
  • Zhao L., Macau E., Omar N., “Scene Segmentation of the Chaotic Oscillator Network”, Int. Journal of Bifurcation and Chaos, 10, 7, 2000, 1697-1708
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0022-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.