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Streszczenie:   A problem of stationary heat conduction in 
laminates with transversally graded structure is analysed. These 
composites consist of two components, non-periodically distrib-
uted as laminas. Averaged (macroscopic) properties of these lami-
nates are slowly and continuously varied along the axis normal to 
laminas. In this contribution the stationary heat conduction prob-
lem is analysed in the framework of the tolerance model, proposed 
by Jędrysiak and Radzikowska [2,6,3]. 

Słowa kluczowe:  heat conduction, transversally graded lami-
nates, tolerance averaging. 

1. INTRODUCTION 

Laminates under consideration are made of two compo-
nents, non-periodically distributed along a direction normal 
to laminas. Averaged (macroscopic) properties of them are 
assumed to be continuously varied along this direction, cf. 
Fig. 1. Their microstructure can be realised in the form of 
uniform (λ=const), cf. Fig. 2a, or non-uniform (λ=λ(x)) 
distribution of laminas, cf. Fig. 2b. Thus, these laminates 
can be treated as made of a functionally graded material 
(FGM), cf. Suresh and Mortensen [7]. These composites are 
called transversally graded laminates (TGL), cf. Jędrysiak 
and Radzikowska [4]. 
In order to describe thermomechanical phenomena in FG-
type composites methods proposed for macroscopically 
homogeneous materials are usually applied. Some of the 
fundamental methods are discussed in [7]. It has to be men-
tioned those approaches based on the asymptotic homogeni-
zation. Unfortunately, the effect of the microstructure size 
is usually omitted in governing equations of these models, 
cf. the book by Cz. Woźniak and Wierzbicki [10] and edi-
ted by Cz. Woźniak, Michalak and Jędrysiak [8]. 
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Fig. 1. A fragment of the laminate on the macro-scale 

The tolerance modelling is an approach without this draw-
back, which was proposed for non-stationary problems of 
periodic composites and structures in [10] and extended on 
FG-type media in [8] and the book edited by Cz. Woźniak 
et al. [9]. The bibliography of applications of this approach 
to investigate various problems of FG-type composites can 
be found in these monographs. 
This modelling technique is also applied in the analysis of 
heat conduction problems, cf. Jędrysiak and Radzikowska 
[2-4], Michalak, Cz. Woźniak and M. Woźniak [5], Radzi-
kowska and Jędrysiak [6], which are described for FG-type 
laminates by differential equations with highly oscillating, 
tolerance-periodic, non-continuous, functional coefficients. 
Using the tolerance modelling these equations are replaced 
by the system of differential equations with slowly-varying 
coefficients. Some applications of this approach for trans-
versally graded structures are also shown in the book by 
Jędrysiak [1]. 
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The aim of this paper is to show differences between distri-
butions of temperature in transversally graded laminates 
with uniform and non-uniform distribution of laminas. 
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Fig. 2. A fragment of the laminate on the micro-scale:  
a) with the uniform distribution of laminas,  
b) with the non-uniform distribution of laminas 

2. FORMULATION OF THE PROBLEM 

Introduce indices related to the Carthesian coordinate sys-
tem Ox1x2x3 by i, j,…, which run on 1,2,3; and indices re-
lated to the system Ox2x3 by α, β,…, which run on 2,3. De-
note: x≡(x2,x3), x≡x1. Let derivatives of xi, i=1,2,3, be de-
noted by jiji ∂∂≡∂ KK , of xα, α=2,3, by βαβα ∂∂≡∂ KK , 
and of x by ∂. Let us assume that the considered layer has 
thickness H along the x-axis and the dimensions Lα along 
the xα-axes. The laminate is made of two materials, distri-
buted in M laminas with thickness λ. We assume that 
λ<<H. The heat conduction tensors of these materials have 
components ijij kk ′′′  , , i,j=1,2,3. The mth lamina (m=1,…,M) is 
consisted of two homogeneous sub-laminas having thick-
nesses mm λ ′′λ′  , . For the laminate with non-uniform distribu-
tion of laminas the mth lamina has thickness λm dependent 
on x (cf. Fig. 2b) and thicknesses of sub-laminas are equal: 

const==λ′ lm , lmm −λ=λ ′′  which depends on x. However, 
for the laminate with uniform distribution of laminas the 
mth lamina has thickness λm=const (independent of x, cf. 
Fig. 2a) and thicknesses of sub-laminas are equal mλ′ , mλ ′′ , 
which (both) depend on x. Let mmmmmm λλ ′′≡ν′′λλ′≡ν′ / ,/  be 
material volume fractions in the mth lamina. Since sequence 

}{ mν′ , m=1,…,M, is assumed to be monotone and for every 
m=1,…,M−1 to satisfy condition 1|| 1 <<ν′−ν′ + mm , the layer 
can be treated as made of the functionally graded material. 
Moreover 1=ν′′+ν′ mm . Hence, the above conditions are 
satisfied also by sequence }{ mν′′ . It follows that sequences 

}{ mν′ , }{ mν′′ , m=1,…,M, can be approximated by continuous 
functions ν′(·), ν″(·). These functions determine the distri-
bution of material properties along the x-axis and are called 

the fraction ratios of materials. Similarly, sequence {λm} of 
laminas thicknesses can be approximated by function λ(·), 
called the cell distribution function (which is constant for 
laminates with uniform distribution of laminas, cf. [1]). Let 
us also introduce the non-homogeneity ratio ν, defined by 
ν(·)≡[ν′(·)ν″(·)]½. Functions ν′, ν″, λ are assumed to be 
slowly-varying in x, cf. [2,3,5]. A fragment of the layer on 
the macrolevel is shown in Fig. 1 and on the microlevel in 
Fig. 2. 
Let us assume small oscillations of the unknown tempera-
ture field T. Denote by p the intensity of heat sources. 
Hence, heat conduction in a transversally graded composite 
is described by the Fourier’s equation in the form 

 pTk jiji =∂∂− )( , (1) 

with coefficients kij=kij(x), which can be highly oscillating, 
tolerance-periodic, non-continuous functions in x. To solve 
heat conduction problems of this type, equation (1) will be 
replaced by a system of differential equations with slowly-
varying coefficients, by using the tolerance averaging tech-
nique, cf. [9,2,5,1]. 

3. TOLERANCE MODELLING 

3.1. Modelling assumptions 

In the tolerance modelling there are applied introductory 
concepts, e.g.: the highly oscillating function, the averaging 
operator, the slowly-varying function, the fluctuation shape 
function, which are defined and explained e.g. in [8,9]. One 
of them is the averaging operator defined for an arbitrary 
integrable function f determined in interval [0,H] in the 
form 
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The other concept is the fluctuation shape function h, being 
continuous. It can be assumed for the considered laminate 
in form (3): 
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where x  is a centre of interval ]2/,2/[ λλ− ; A is an ampli-
tude, being of an order of the microstructure parameter in 
the problem under consideration. It will be assumed that the 
microstructure parameter is equal λ=const for the TGL with 
uniform distribution of laminas (hence A=λ), but for the 
TGL with non-uniform distribution – it is equal l=const (i.e. 
A=l). 
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The fundamental assumption of the tolerance modelling, cf. 
[8,9,3], is the micro-macro decomposition, in which tem-
perature T=T(x,x,t), x∈[0,H], is decomposed as 

 T(x,x,t)=θ(x,x,t)+h(x)ϑ(x,x,t), (4) 

with macrotemperature θ(·,x,t) and amplitude fluctuation 
ϑ(·,x,t), which are new basic unknowns, being slowly-
varying functions in x. 
Moreover, in the modelling procedure we use the tolerance 
averaging approximation, i.e. terms of an order O(δ) are 
neglected as negligibly small in the comparing to 1 (where 
δ is a tolerance parameter). 

3.2. Tolerance model equations 

The modelling procedure presented for FG-type composites 
in [8,9] and applied for heat conductions in laminates in [2-
4,6] leads from equation (1) to the governing equations of 
the tolerance model of heat conduction in transversally 
graded laminates: 
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where underlined terms depend on the microstructure pa-
rameter. Coefficients of equations (5) are slowly-varying 
functions in x. It can be observed that the above tolerance 
model equations take into account the effect of the micro-
structure size. 

4. APPLICATION – A STATIONARY HEAT 
TRANSFER ACROSS LAMINAS 

4.1. Analytical solutions 

In order to compare distributions of temperature in trans-
versally graded laminates with uniform and non-uniform 
distribution of laminas it is considered the stationary heat 
conduction across laminas, i.e. along the x-axis. The basic 
unknowns are functions of argument x, i.e. θ=θ(x), ϑ=ϑ(x). 
We also neglect heat sources p. Denoting: 
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from equations (5) we obtain one differential equation for 
macrotemperature θ and the formula for amplitude fluctua-
tion ϑ in the form: 

 ,~,0)( 1 θ∂−=ϑ=θ∂∂ −KKK eff
(  (7) 

with slowly-varying functional coefficients. Since all these 
coefficients are determined by the known functions, a solu-
tion to equation (7)1 can be calculated as in papers [2,3]. 

For the layer under consideration parameters k′, k″ are con-
stant. Hence, using formula (6)4 and the fluctuation shape 
function (3) the effective heat conduction coefficient Keff is 
equal Keff(x)=k′k″[k′+(k″−k′)ν′(x)]−1. 
Denoting N(x)=∫ν′(x)dx macrotemperature θ, being the so-
lution to (7)1, is given by 

 ,)]())(()([)( 11 BxNkkkkkxAx +′′′′−′′+′′=θ −−  (8) 

where A, B are constants calculated from boundary condi-
tions. Assuming the boundary conditions in the form 

 ,0)(:;)0(:0 0 =θ=θ=θ= HHxx  (9) 

these constants are equal: 

 ;
)]()0()[(0 HkHNNkk

kkA
′−−′−′′

′′′θ=  (10) 

 .
)]()0()[(

)()(
0 HkHNNkk

HNkkHkB
′−−′−′′

′−′′+′θ−=  (11) 

Using formula (7)2 with (8) and substituting the resulting 
equation and (8) into formula (4) the temperature takes the 
form: 
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Formula (12) with constants A, B determined by (10), (11) 
describes the distribution of the temperature in both the 
type of transversally graded laminates under consideration. 

4.2. Results 

Let us assume for the TGL layer with non-uniform distribu-
tion of laminas that the cell distribution function λ(x) is 
linear: 

 lxx MH
MlH +=λ −

−
)1(
)(2)( , (13) 

where H is the layer thickness coupled with the microstruc-
ture parameter l by the relation H=(2M-1)l (M is the num-
ber of laminas). The fraction ratios of materials have the 
form: 

 )(1)(,))(()( 1 xxxlx ν′−=ν ′′λ=ν′ − . (14) 

In order to compare and evaluate results we consider four 
cases of the layer: 
1) the first case (φ=1) – the layer with the non-uniform dis-
tribution of laminas, given by function (13), for which func-
tions ν′, ν″ are determined by (14);  
2) the second case (φ=2) – the layer with the uniform distri-
bution of laminas, λ=const, for which functions ν′, ν″ are 
also determined by (14);  
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3) the third case (φ=3) – the layer with the uniform distribu-
tion of laminas, λ=const, for which functions ν′, ν″ are li-
near:  
 ν′(x)=1−x/H, ν″(x)=1−ν′(x)=x/H; (15) 

4) the fourth case (φ=4) – the periodic layer, λ(x)=2l. 
Some results are shown in Fig. 3-4. In Fig. 3 there are pre-
sented plots of distributions of temperature T across lami-
nas, obtained in the framework of the tolerance model for 
four aforementioned cases of the layer – φ=1,2,3,4, in inter-
val [0,H]. Fig. 4 shows diagrams of temperature T for three 
of these cases – φ=1,2,4, in interval [0.36H,0.45H]. Calcu-
lations are made for the layer consisted of M=20 laminas, 
hence: for φ=1 – l/H=0.026, for φ=2,3,4 – λ/H=0.05. It is 
also assumed that ratios of heat conduction coefficients of 
both the materials are equal: k″/k′=0.33 (a) or k″/k′=0.2 (b). 

 

Fig. 3. Plots of temperature T along the layer thickness H for 
x∈[0,H] (a – for k″/k′=0.33, b – for k″/k′=0.2) 

 

Fig. 4. Plots of temperature T for x∈[0.36H,0.45H] (a – for 
k″/k′=0.33, b – for k″/k′=0.2) 

5. FINAL REMARKS 

Analysing obtained results some remarks can be formu-
lated: 
• Differences between values of temperature T in the 

layers with non-uniform (φ=1) and uniform (φ=2) dis-
tribution of laminas, characterised by the same fraction 
ratios of materials ν′, ν″, (14), are very small (i.e. they 
are observed on the microlevel), cf. Fig. 4. 

• Temperatures in the layers with uniform distribution of 
laminas, described by linear fraction ratios of materials 
(φ=3), are higher than those in the layers with non-
uniform distribution of laminas, characterised by linear 
cell distribution function (φ=1), cf. Fig. 3. 

• Differences between temperatures in the periodic lay-
ers calculated for various ratios k″/k′ are very small; 
they are smaller than in the TGL layers. 
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