PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wielofunkcyjne cienkie warstwy wytwarzane w magnetronowym reaktorze plazmochemicznym

Autorzy
Identyfikatory
Warianty tytułu
EN
Multifunctional thin films fabricated in magnetron plasmochemical reactor
Języki publikacji
PL
Abstrakty
PL
Przedmiotem rozprawy jest wykazanie, że dobór odpowiednich parametrów wyładowania jarzeniowego częstotliwości radiowej (ang. radio frequency - RF) może w sposób efektywny poprawić strukturę oraz właściwości mechaniczne, optyczne i elektryczne warstw wytwarzanych w procesie reaktywnego rozpylania magnetronowego. Cześć pierwsza rozprawy, obejmująca rozdział 1 i 2, zawiera przesłanki literaturowe, które legły u podstaw połączenia rozpylania magnetronowego z procesem RF PECYD - budowie magnetronowego reaktora plazmochemcznego. Obecność plazmy w sąsiedztwie stolika z próbkami jest dodatkowym źródłem jonów docierających do wzrastającej powierzchni warstwy, stymuluje dyfuzję powierzchniową „adatomów" odpowiedzialną za strukturę oraz właściwości formowanej cienkiej warstwy. Pozwala także na przeprowadzenie procesu osadzania bez dodatkowego wygrzewania próbki w trakcie procesu lub po jego zakończeniu, co jest istotne z punktu widzenia podłoży polimerowych o niskiej temperaturze mięknięcia. W drugiej części, w rozdziale 3 i 4, autor przedstawia wyniki badań wpływu potencjału autopolaryzacji na strukturę i właściwości użytkowe wielofunkcyjnych warstw. Rozdział 3 poświęcony jest cienkim warstwom ITO (tlenek indium domieszkowany cyną), natomiast rozdział 4 nanokompozytowym warstwom na bazie azotku tytanu. W przypadku ITO otrzymanego w procesie reaktywnego rozpylania magnetronowego wzrost intensywności bombardowania tworzonej powierzchni przez jony poprawia przezroczystość i przewodnictwo tego materiału. Wpływ potencjału autopolaryzacji na strukturę i właściwości użytkowych wielofunkcyjnych warstw jest ściśle związany z ciśnieniem podczas procesu osadzania warstw, a w szczególności z zawartością reaktywnego gazu w atmosferze roboczej. Zły dobór tych zewnętrznie kontrolowanych parametrów procesu może prowadzić do zubożenia właściwości tych warstw. W trzeciej części, rozdział 5, zaprezentowano wyniki przedstawiające wpływ zewnętrznie kontrolowanych parametrów wyładowania jarzeniowego RF na temperaturę podłoża. Pomiary z użyciem kamery termowizyjnej pokazują, że temperatura podłoża w wyniku oddziaływania plazmy z powierzchnią może osiągać bardzo wysokie wartości, powyżej temperatury mięknięcia większości materiałów polimerowych, a będących na granicy odpuszczania podłoży stalowych. Efekt nagrzewania się próbki poddanej działaniu plazmy RF jest tym skuteczniejszy, im jej kształt jest bardziej skomplikowany przy jednoczesnym bardzo wysokim stosunku rozwinięcia powierzchni do masy próbki. Podsumowująca dyskusja wyników otrzymanych przez autora, dotyczących obecności wyładowania jarzeniowego RF w sąsiedztwie wzrastającej powierzchni cienkiej warstwy oraz jego wpływu na mechanizm wzrostu warstwy w procesie reaktywnego rozpylania magnetronowego, strukturę i cechy użytkowe warstw wytwarzanych w tym procesie została przedstawiona w rozdziale 6. Praca zakończona jest rozdziałem 7, w którym autor przedstawia wnioski końcowe z przedstawionych w pracy wyników badań.
EN
The subject of dissertation is show that proper selection of parameters of radio frequency glow discharge can improve in effective way structure, mechanical, optical and electrical properties of films fabricated in reactive magnetron sputtering process. The first part of dissertation, contain chapter 1 and 2, include literature premise which placed under base of connection of magnetron sputtering with RF PECVD process. Presence of plasma in vicinity of samples holder is additional source of ion advanced to grown surface of film, stimulate of add-atoms surface diffusion responsible for structure and properties of deposited thin film. It also allow on fabricate of films without additional heating of sample during and after deposition process, what is important in the case of polymer substrate with low softening point. In the second part, chapter 3 and 4, author shows results of investigation of effect of self bias voltage on structure and properties of multifunctional films. The chapter 3 is attributed the thin ITO films (thin doped indium oxides), whereas chapter 4 nanocomposite titanium nitride - based films. In the case of ITO obtained in reactive magnetron sputtering process the increase ion bombardment of grow surface improve transparency and conductivity this materials. Effect of self bias voltage on structure and improve of utilize properties of multifunctional films is connected with pressure during the deposition process, in particular with contents of reactive gas in working atmosphere. Bad selection of these external controlled parameters of process can lead to depletion of properties of these films. In the third part (chapter 5) effect of external controlled parameters of radio frequency glow discharge on surface temperature is presented. Measurements using termographic camera shows that surface temperature in results of interaction with plasma can reach very high value. Temperature higher that melting point of majority polymers and on boundary of tempering temperature of steel substrate. Heating effect of sample put to interaction with plasma is the effective the shape of sample is more complicated with simultaneous high rate of development of surface to mass of sample. Summarizing discussion of obtained results concerning of presence of radio frequency glow discharge in vicinity of grow surface of thin film and there effect on mechanism of film grow during reactive magnetron sputtering process, structure and utilize characteristic of deposited films has been shown in chapter 6. The dissertation ended chapter 7, in which author shows final conclusion from presented in dissertation results of investigation.
Rocznik
Tom
Strony
3--88
Opis fizyczny
Bibliogr. 174 poz.
Twórcy
autor
  • Zakład Inżynierii Biomedycznej Instytut Inżynierii Materiałowej Politechnika Łódzka
Bibliografia
  • [1] W.R. Grove, On the electrochemical polarity of gases, Philosophical Transactions of the Royal Society of London 142 (1852), 87-101.
  • [2] F.M. Penning, U.S. Patent 2, 146,025 (Luty 1935 r.)
  • [3] J.S. Chapin, The planar magnetron, Research Development 25 (1974), 37-40.
  • [4] T. Burakowski, E. Koliński, T. Wierzchoń, Inżynieria powierzchni metali, Wydawnictwo Politechniki Warszawskiej, Warszawa 1992.
  • [5] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a revive of recent developments and applications, Vacuum 56 (2000), 159-172.
  • [6] F. Adibi, I. Petrov, J.E. Greene, L. Hultman, J.E. Sundgren, Effects of high- flux low-energy (20-100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Tio.5Alo.5N alloys grown by ultra-high- vacuum reactive magnetron sputtering, Journal of Applied Physics 73 (1993), 8580-8589.
  • [7] N. Savvides, B. Window, Unbalanced Magnetron Ion-Assisted Deposition and Property Modification of Thin Films, Journal of Vacuum Science and Technology A 4 (1986), 504-508.
  • [8] R.P. Howson, H.A. J'Afer, A.G. Spencer, Substrate effects from an unbalanced magnetron, Thin Solid Films 193 (1990), 127-137.
  • [9] W.D. Sproul, High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings, Vacuum 51 (1998), 641-646.
  • [10] J. O'Brien, R.D. Arnell, Production and characterisation of chemically reactive porous coatings of zirconium via unbalanced magnetron sputtering, Surface and Coatings Technology 86-87 (1996), 200-206.
  • [11] G. Este, W.D. Westwood, A quasi-direct-current sputtering technique for the deposition of dielectrics at enhanced rates, Journal of Vacuum Science and Technology A 6 (1988), 1845-1848.
  • [12] S. Maniv, C. Miner, W.D. Westwood, High rate deposition of transparent conducting films by modified reactive planar magnetron sputtering of Cd2Sn alloy, Journal of Vacuum Science and Technology 18 (1981), 195-198.
  • [13] B. Wendler, Wykorzystanie reakcyjnej, odrdzeniowej dyfuzji węgla w procesach uszlachetniania powierzchni, Wydawnictwo Politechniki Łódzkiej, Zeszyty Naukowe Nr 873, Łódź 2001.
  • [14] S. Fouvry, B. Wendler, T. Liskiewicz, M. Dudek. L. Kołodziejczyk, Fretting wear analysis of TiC/VC multilayered hard coatings: experiments and modelling approaches, Wear 257 (2004), 641-653.
  • [15] W.D. Sproul, D.J. Christie, D.C. Carter, Control of reactive sputtering processes, Thin Solid Films 491 (2005) 1-17.
  • [16] P.J. Kelly, P.S. Henderson, R.D. Arnell, G.A Roche, D. Carter, Reactive pulsed magnetron sputtering process for alumina films, Journal of Vacuum Science and Technology A 18 (2000), 2890-2896.
  • [17] D. Carter, H. Walde, G. McDonough, G. Roche, Parameter Optimization in Pulsed DC Reactive Sputter Deposition of Aluminum Oxide, 45th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Lake Buena Vista, Florida 2002, 570-577.
  • [18] M. Scherer, J. Schmitt, R. Latz, M. Schanz, Reactive alternating current magnetron sputtering of dielectric layers, Journal of Vacuum Science and Technology A 16 (1992), 1772-1776.
  • [19] E. Hechtl, H.L. Bay, J. Bohdansky, Low energy selfsputtering yields of nickel, Journal of Applied Physics 16 (1978), 147-150.
  • [20] S. Kadlec, J. Musil, Low pressure magnetron sputtering and selfsputtering discharges, Vacuum 47 (1996), 307-311.
  • [21] W.M. Posadowski, A. Brudnik, Optical emission spectroscopy of self-sustained magnetron sputtering, Vacuum 53 (1999), 11-15
  • [22] W.M. Posadowski, Plasma parameters of very high target power density magnetron sputtering, Thin Solid Films 392 (2001), 201-207.
  • [23] D.M. Mattox, The foundations of vacuum coating technology, Noyes Publications / William Andrew Publishing, New York 2003,
  • [24] A. Sokołowska, Niekonwencjonalne środki syntezy materiałów, Wydawnictwo Naukowe PWN, Warszawa 1991.
  • [25] K. Zdunek, Plazma impulsowa w inżynierii powierzchni, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004.
  • [26] M. Sokołowski, A. Sokołowska, A. Michalski, B. Gokieli, Z. Romanowski, A. Rusek, Crystallization from a reactive pulse plasma, Journal of Crystal Growth 42 (1977), 507-511.
  • [27] M. Sokołowski, A. Sokołowska, B. Gokieli, A. Michalski, A. Rusek, Z. Romanowski, Reactive pulse plasma crystallization of diamond and diamondlike carbon, Journal of Crystal Growth 47 (1979), 421-426.
  • [28] M. Sokołowski, A. Sokołowska, A. Michalski, A. Rusek-Mazurek, Z. Romanowski, M. Wronkowski, The deposition of thin films of materials with high melting points on substrates at room temperature using the pulse plasma method, Thin Solid Films 80 (1981), 249-254.
  • [29] M. Sokołowski, A. Sokołowska, Electric charge influence on the metastable phase nucleation, Journal of Crystal Growth 57 (1982) 185-188.
  • [30] A. Sokołowska, A. Olszyna, A. Michalski, K. Zdunek, Diamond layers deposited from impulse plasma, Surface and Coatings Technology 47 (1991), 144-147.
  • [31] R.F. Bunshah, ed. Handbook of Deposition Technologies for Films and Coatings, 2nd edition, Noyes Publications, Park Ridge 1994.
  • [32] E. Kay, J. Coburn, A. Dilks, Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization, Topics in Current Chemistry 94 (1980), 1-42.
  • [33] S. Mitura, Nucleation of diamond powder particles in an RF methane plasma, Journal of Crystal Growth 80 (1987), 417-424.
  • [34] J. Mort, F. Jansen, eds. Plasma Deposited Thin Films, CRC Press, Boca Raton 1986.
  • [35] P. Ziemann, E. Kay, Correlation between the ion bombardment during film growth of Pd films and their structural and electrical properties, Journal of Vacuum Science and Technology A 1 (1983), 512-516.
  • [36] E.M. Liston, L. Martinu, M.R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, Journal of Adhesion Science and Technology 7 (1993), 1091-1127.
  • [37] O.M. Kiittel, J.E. Klemberg-Sapieha, L. Martinu, M.R. Wertheimer, Energy Fluxes in Mixed Microwave/Radio Frequency Plasma, Thin Solid Films, 193/194 (1990), 155-163.
  • [38] J.E. Klemberg-Sapieha, O.M. Kiittel, L. Martinu, M.R. Wertheimer,Dual-Frequency N2 and NH3 Plasma Modification of Polyethylene and Polyimide, Journal of Vacuum Science and Technology A 9 (1991), 2975-2981.
  • [39] L. Martinu, A. Raveh, A. Domingue, L. Bertrand, J.E. Klemberg-Sapieha, S.C. Gujrathi, M.R. Wertheimer, Hard Carbon Films Deposited under High Ion Flux, Thin Solid Films, 208 (1992), 42-47.
  • [40] S. Sapieha, J. Cerny, J.E. Klemberg-Sapieha, L. Martinu, Corona Versus Low Pressure Plasma Treatment: Effect on Surface Properties and Adhesion of Polymers, Journal of Adhesion, 42 (1993), 91-102.
  • [41] J.A. Thornton, Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings, Journal of Vacuum Science and Technology 11 (1974), 666-670.
  • [42] M.R. Wertheimer, L. Martinu, Ion bombardment effects in dual microwave/radio frequency plasmas, in Microwave Discharges: Fundamentals and Applications, eds. C.M. Ferreira and M. Moisan, NATO ASI Series B, Vol. 302, Plenum Press, New York 1993, 465.
  • [43] S. Veprek, The search for novel, superhard materials, Journal of Vacuum Science and Technology A 17 (1999), 2401-2420.
  • [44] D.M. Mattox, Ion plating, eds. S.M. Rossnagel, J.J. Cuomo, W.D. Westwood, eds. Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge 1990, 338
  • [45] A. Amassian, P. Desjardins, L. Martinu, Influence of Low Ion Bombardment Energy on Interface Formation and Thin Film Growth in a Plasma-CVD Environment, 48th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Denver 2005, 410-416.
  • [46] R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, Journal of Vacuum Science and Technology A 2 (1984), 500-503.
  • [47] A.J. Michalski, Fizykochemiczne podstawy otrzymywania powłok z fazy gazowej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2000.
  • [48] Y. Catherine, in Diamond and Diamondlike Films and Coatings, NATO-ASI Series B: Physics, R.E. Clausing, L.L. Horton, J.C. Angus, and P. Koidl, Eds., Plenum Publishing Co., New York, 1991, p. 193.
  • [49] A. Grill, Plasma-deposited diamondlike carbon and related Materials, IBM Journal of Research and Development 43 (1999), 147-161.
  • [50] T. Burakowski, T. Wierzchoń, Inżynieria powierzchni metali, Wydawnictwa Naukowo-Techniczne, Warszawa 1995.
  • [51] P. Kula, Inżynieria warstwy wierzchniej, Wydawnictwo Politechniki Łódzkiej, Łódź 2000.
  • [52] J. Musil, S. Kadlec, Reactive sputtering of TiN films at large substrate to target distances, Vacuum 40 (1990), 435-444.
  • [53] W.D. Munz, The unbalanced magnetron: current status of development, Surface and Coating Technology 48 (1991), 81-94.
  • [54] M. Gioti, S. Logothetidis, Effect of substrate bias in amorphous carbon films prepared by magnetron sputtering and monitored by in-situ spectroscopic ellipsometry, Diamond and Related Materials 7 (1998), 444-448.
  • [55] L. Martinu, J.E. Klemberg-Sapieha, M.R. Wertheimer, Dual-Mode Microwave/Radio Frequency Plasma Deposition of Dielectric Thin Films, Applied Physics Letters 54 (1989), 2645-2647.
  • [56] J.E. Klemberg-Sapieha, O.M. Kiittel, L. Martinu, M.R. Wertheimer, Dual Microwave/Radio Frequency Plasma Deposition of Functional Coatings, Thin Solid Films, 193/194 (1990), 965-972.
  • [57] J.E. Klemberg-Sapieha, L. Martinu, M.R. Wertheimer, P. Gunther, R. Schellin, C. Thielemann, G.M. Sessler, Plasma deposition of low-stress electret films for electroacoustic and solar cell applications, Journal of Vacuum Science and Technology A 14 (1996), 2775-2779.
  • [58] L. Martinu, J.E. Klemberg-Sapieha, O.M. Kiittel, A. Raveh, M.R. Wertheimer, Critical Ion Energy and Ion Flux in the Growth of Films by PECVD, Journal of Vacuum Science and Technology A 12 (1994), 1360-1364.
  • [59] M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Application-oriented modifications of deposition processes for diamond-like carbon-based coatings, Surface and Coatings Technology 74/75 (1995), 739-745.
  • [60] X.L. Peng, T.W. Clyne, Mechanical stability of DLC films on metallic substrates Part II, Thin Solid Films 312 (1998), 219-227.
  • [61] K. Bewilogua, C.V. Cooper, C. Specht, J. Schroder, R. Wittorf, M. Grischke, Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings, Surface and Coating Technology 127 (2000), 224-232.
  • [62] D. Batory, M. Cłapa, S. Mitura, Warstwy gradientowe Ti:C wytwarzane w plazmie RF PACVD z udziałem rozpylania magnetronowego, Inżynieria Materiałowa 153 (2006), 868-871.
  • [63] M. Cłapa, D. Batory, Improving adhesion and wear resistance of carbon coatings using Ti: gradient layers, Journal of Achievements in Materials and Manufacturing Engeering 20 (2007), 415-418.
  • [64] L. Martinu, Optical response of composite plasma polymer/metal films in the effective medium approach, Solar Energy Materials 15 (1987), 21-35.
  • [65] D. Dalacu, L. Martinu, Temperature dependence of the surface plasmon resonance of Au/Si02 nanocomposite films, Applied Physics Letters 77 (2000), 4283-4285.
  • [66] D. Dalacu, L. Martinu, Optical properties of discontinuous gold films: finite- size effects, Journal of the Optical Society of America B: Optical Physics 18 (2001), 85-92.
  • [67] J.-M. Lamarre, Z. Yu, C. Harkati, S. Roorda, L. Martinu, Optical and microstructural properties of nanocomposite Au/Si02 films containing particles deformed by heavy ion irradiation, Thin Solid Films 479 (2005), 232-237.
  • [68] C. Harkati Kerboua, J.-M. Lamarre, L. Martinu, S. Roorda, Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica, Nuclear Instruments and Methods in Physics Research B 257 (2007), 42-46.
  • [69] J.L. Vossen, Transparent Conducting Films, Physics of Thin Films 9 (1977), 1-71.
  • [70] I. Hamberg, C.G. Granqvist, Evaporated Sn-doped ln203 films: basic optical properties and applications to energy-efficient windows, Journal of Applied Physics 60 (1986), R123-R159.
  • [71] M. Bender, J. Trube, J. Stoollenwerk, Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology, Thin Solid Films 354 (1999), 100-105.
  • [72] B.H. Lee, I.G. Kim, S.W. Cho, S.H. Lee, Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application, Thin Solid Films 302 (1997), 25-30.
  • [73] J.S. Kim, M. Granstrom, R.H. Friend, Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance, Journal of Applied Physics 84 (1998), 6859-6870.
  • [74] R. Tahar, T. Ban, Y. Ohya, Y. Takahashi, Tin doped indium oxide thin films: Electrical properties, Journal of Applied Physics 83 (1998), 2631-2645.
  • [75] M. Marezio, Refinement of the crystal structure of ln203 at two wavelengths, Acta Crystallographica 20 (1966), 723-728. ;
  • [76] Z.W. Yang, S.H. Han, T.L. Yang, Lina Ye, D.H. Zhang, H.L. Ma, C.F. Cheng, Bias voltage dependence of properties for depositing transparent conducting ITO films on flexible substrate, Thin Solid Films 366 (2000), 4-7.
  • [77] S. Honda, K. Chihara, M. Watamori, K. Oura, Depth profiling of oxygen content of indium tin oxide fabricated by bias sputtering, Applied Surface Science 113/114(1997), 408-411.
  • [78] C. Sujatha, G. Mohan Rao, S. Uthanna, Characteristics of indium tin oxide films deposited by bias magnetron sputtering, Materials Science and Engineering B 94 (2002), 106-110.
  • [79] T.J. Coutts, D.L. Young, X. Li, Characterization of transparent conducting oxides, MRS Bulletin 25 (2000), 58-65.
  • [80] M. Dudek. O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu, Ion-induced effects during reactive sputtering of ITO films, 48th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Denver, Colorado 2005, 192-196.
  • [81] M. Dudek. Struktura i właściwości warstw ITO wytwarzanych metodą reaktywnego rozpylania magnetronowego, Inżynieria Materiałowa 5 153 (2006), 935-938.
  • [82] O. Zabeida, M. Dudek. J.E. Klemberg-Sapieha, L. Martinu, Ion-induced effects during bias- and pulse-controlled reactive sputtering of ITO films, Society of Vacuum Coaters Bulletin, Fall 2005, 32-35.
  • [83] A. Amassian, M. Dudek. O. Zabeida, S. Gujrathi, J.E. Klemberg-Sapieha, L. Martinu, Oxygen incorporation and charge donor activation via subplantation during growth of indium tin oxide films, Journal of Vacuum Science and Technology A 27 (2009), 362-366.
  • [84] M. Dudek. A. Amassian, O. Zabeida, J.E. Klemberg-Saphieha, L. Martinu, Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering, Thin Solid Films 517 (2009), 4576-4582.
  • [85] J. Rivory, Characterization of inhomogeneous dielectric films by spectroscopic ellipsometry, Thin Solid Films 313/314 (1998), 333-340.
  • [86] M. Losurdo, Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films, Thin Solid Films 455/456 (2004), 301-312.
  • [87] A. Amassian, M. Gaidi, M. Chaker, L. Martinu, Optical depth profiling of strontium titanate and electro-optic lanthanum-modified lead zirconium titanate multilayer structures for active waveguide applications, Journal of Vacuum Science and Technology A 24 (2006), 55-64.
  • [88] R. Vernhes, A. Amassian, J.E. Klemberg-Sapieha, L. Martinu, Plasma treatment of porous SiNx:H films for the fabrication of porous-dense multilayer optical filters with tailored interfaces Journal of Applied Physics 99 (2006), 114315(1-12).
  • [89] W. Fukarek, H. Kersten, Application of dynamic in situ ellipsometry to the deposition of tin-doped indium oxide films by reactive direct-current magnetron sputtering, Journal of Vacuum Science and Technology A 12 (1994), 523-525.
  • [90] F. Wooten, Optical Properties of Solids, Academic Press, New-York NY, 1972.
  • [91] B. Johs, J.A. Woollam, C.M. Herzinger, J. Hilfiker, R. Synowicki, C.L. Bungay, Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part II: Advanced Applications, Critical Reviews in Environmental Science and Technology 72 (1999), 29-58.
  • [92] S.C. Gujrathi, in: E. Sacher, J.J. Pireaux, S.P. Kowalczyk (eds.), Metallized Polymers, Washington, DC, 1990, American Chemical Society Symposium Series, Vol. 440, 1990, p. 88.
  • [93] W.C. Oliver, G.M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (1992), 1564-1583.
  • [94] C. Wild, P. Koidl, Ion and electron dynamics in the sheath of radio frequency glow discharges, Journal of Applied Physics 69 (1991), 2909-2922.
  • [95] A. Hallil, O. Zabeida, M.R. Wertheimer, L. Martinu, Mass-resolved ion energy distributions in continuous dual mode microwave/radio frequency plasmas in argon and nitrogen, Journal of Vacuum Science and Technology A 18 (2000), 882-890.
  • [96] A. Amassian, P. Desjardins, L. Martinu, Ion-Surface Interactions on C-Si(001) at the Radiofrequency-Powered Electrode in Low-Pressure Plasmas: Ex Situ Spectroscopic Ellipsometry and Monte Carlo Simulation Study, Journal of Vacuum Science and Technology A 24 (2006), 45-54.
  • [97] A. Amassian, M. Svec, P. Desjardins, L. Martinu, Interface Broadening Due to Ion Mixing During Thin Film Growth at the Radio-Frequency-Biased Electrode in a Plasma-Enhanced Chemical Vapor Deposition Environment, Journal of Vacuum Science and Technology A 24 (2006), 2061-2069.
  • [98] D.W. van Krevelen, Properties of Polymers, 3rd edition, Elsevier Science Publishers, Amsterdam, 1990, p. 92.
  • [99] Y. Okada, Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, Journal of Applied Physics 56(1984), 314-320.
  • [100] W. Molier, W. Eckstein, Tridyn - A TRIM simulation code including dynamic composition changes, Nuclear Instruments and Methods in Physics Research B 2 (1984), 814-818.
  • [101] B. Johs, General virtual interface algorithm for in situ spectroscopic ellipsometric data analysis, Thin Solid Films 455/456 (2004), 632-638.
  • [102] C. Wild, P. KoidI, Ion and electron dynamics in the sheath of radio-frequency glow discharges, Journal of Applied Physics 69 (1991), 2909-2922.
  • [103] A. Hallil, O. Zabeida, M. R. Wertheimer, L. Martinu, Mass-resolved ion energy distributions in continuous dual mode microwave/radio frequency plasmas in argon and nitrogen, Journal of Vacuum Science and Technology A 18 (2000), 882-890.
  • [104] A. Ershov, L. Pekker, Model of d.c. magnetron reactive sputtering in Ar-02 gas mixtures, Thin Solid Films 289 (1996), 140-146.
  • [105] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in matter, Pergamon, New York, Vol. 1, 1985.
  • [106] T.E. Haynes, Y. Shigesato, Donor generation from native defects induced by In+ implantation into tin-doped indium oxide, Journal of Applied Physics 77 (1995), 2572-2575.
  • [107] D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang, Atomic- scale imaging of nanoengineered oxygen vacancy profiles in SrTiC>3, Nature 430 (2004), 657-661.
  • [108] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F. Milde,Pulsed magnetron sputter technology, Surface and Coatings Technology 61 (1993), 331-337.
  • [109] A. Belkind, A. Freilich, R. Scholl, Using pulsed direct current power for reactive sputtering of AI2O3, Journal of Vacuum Science and Technology A 17 (1999), 1934-1940.
  • [110] D.A. Glocker, Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN, Journal of Vacuum Science and Technology A 11 (1993), 2989-2993.
  • [111] Y. Zhou, P.J. Kelly, The properties of tin-doped indium oxide films prepared by pulsed magnetron sputtering from powder targets, Thin Solid Films 469-470(2004) , 18-23.
  • [112] A.I. Rogozin, M.V. Vinnichenko, A. Kolitsch, W. Molier, Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering, Journal of Vacuum Science and Technology A 22 (2004), 349-355.
  • [113] M. Dudek. Wpływ parametrów osadzania na właściwości warstw ITO wytwarzanych w procesie reaktywnego rozpylania magnetronowego typu „pulse-DC”, Inżynieria Materiałowa 4 (2010), 337-340.
  • [114] A. Rogozin, M. Vinnichenko, N. Shevchenko, A. Kolitsch, W. Molier, Plasma influence on the properties and structure of indium tin oxide films produced by reactive middle frequency pulsed magnetron sputtering, Thin Solid Films 496(2006) , 197-204.
  • [115] R. Mientus, K. Ellmer, Reactive magnetron sputtering of tin-doped indium oxide (ITO): influence of argon pressure and plasma excitation mode, Surface and Coatings Technology 142/144 (2001), 748-754.
  • [116] Y.C. Lin, J.Y. Li, W.T. Yen, Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering, Applied Surface Science 254 (2008), 3262-3268.
  • [117] C.S. Moon, J.G. Han, Low temperature synthesis of ITO thin film on polymer in Ar/H2 plasma by pulsed DC magnetron sputtering, Thin Solid Films 516 (2008), 6560-6564.
  • [118] V. Sittinger, F. Ruskę, W. Werner, C. Jacobs, B. Szyszka, D.J. Christie,High power pulsed magnetron sputtering of transparent conducting oxides, Thin Solid Films 516 (2008), 5847-5859.
  • [119] F. Horstmann, V. Sittinger, B. Szyszka, Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering, Thin Solid Films 517 (2009), 3178-3182.
  • [120] Y.C. Lin, W.Q. Shi, Z.Z. Chen, Effect of deflection on the mechanical and optoelectronic properties of indium tin oxide films deposited on polyethylene terephthalate substrates by pulse magnetron sputtering, Thin Solid Films 517 (2009), 1701-1705.
  • [121] J.W. Bradley, H. Backer, Y. Aranda-Gonzalvo, P.J. Kelly, R.D. Arnell, Thedistribution of ion energies at the substrate in an asymmetric bi-polar pulsed DC magnetron discharge, Plasma Sources Science and Technology 11 (2002), 165-174.
  • [122] S. Veprek, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology 97 (1997), 15-22.
  • [123] L.A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si)N coating, Journal of Achievements in Materials and Manufacturing 24 (2007), 59-62.
  • [124] L.A. Dobrzański, K. Lukaszkowicz, J. Mikuła, D. Pakuła, Structure and corrosion resistance of gradient and multilayer coatings, Journal of Achievements in Materials and Manufacturing 18 (2006), 75-78.
  • [125] M. Ahlgren, H. Blomqvist, Influence of bias variation on residual stress and texture in TiAIN PVD coatings, Surface and Coatings Technology 200 (2005), 157-160.
  • [126] K. Yamamoto, S. Kujime, K. Takahara, Structural and mechanical property of Si incorporated (Ti,Cr,Al)N coatings deposited by arc ion plating process, Surface and Coatings Technology 200 (2005), 1383-1390.
  • [127] K. Lukaszkowicz, L.A. Dobrzański, M. Pancielejko, Mechanical properties of the PVD gradient coatings deposited onto the hot work tool steel X40CrMoV5-l, Journal of Achievements in Materials and Manufacturing Engineering 24/2(2007) , 115-118.
  • [128] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro, E. Alves, Characterization of Tii_xSixNy nanocomposite films, Surface and Coatings Technology 133-14 (2000), 307-313.
  • [129] F. Vaz, L. Rebouta, Ph. Goudeau, T. Girardeau, J. Pacaud, J.P. Riviere, A. Traverse, Structural transitions in hard Si based TiN coatings: The effect of bias voltage and temperature, Surface and Coatings Technology 146-147 (2001), 274-279.
  • [130] S. Veprek, S. Reiprich, Concept for the design of novel superhard coatings, Thin Solid Films 268 (1995), 64-71.
  • [131] E. Martinez, R. Sanjines, O. Banakh, F. Levy, Electrical, optical and mechanical properties of sputtered CrNy and Cri_xSixNi 02 thin films, Thin Solid Films 447-448 (2004), 332-336.
  • [132] S. Veprek, M. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476(2005) , 1-29.
  • [133] M. Polok-Rubiniec, L.A. Dobrzański, K. Lukaszkowicz, M. Adamiak,Comparison of the structure, properties and wear resistance of the TiN PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 27 (2008), 87-90.
  • [134] A. Niederhofer, P. Nesladek, H.-D. Mannling, K. Moto, S. Veprek, M. Jilek,Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc (Ti!_yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond, Surface and Coatings Technology 120-121 (1999), 173-178.
  • [135] M. Benkahoul, P. Robin, S.C. Gujrathi, L. Martinu, J.E. Klemberg-Sapieha,Microstructure and mechanical properties of Cr-Si-N coating prepared by pulsed reactive dual magnetron sputtering, Surface and coating Technology 202 (2008), 3975-3980.
  • [136] J. Patscljeider, Nanocomposite Hard Coatings for Wear Protection, MRS Bulletin 28 (2003), 180-183.
  • [137] L. Shizhi, S. Yulong, P. Hongrui, Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition, Plasma Chemistry and Plasma Processing 12 (1992) 287-297.
  • [138] J.E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, D.B. Bergstrom,Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Applied Physics Letter 67 (1995), 2928-2930.
  • [139] P. Jedrzejowski, J.E. Klemberg-Sapieha, L. Martinu, Relationship between the mechanical properties and the microstructure of nanocomposite TiN/SiNj 3 coatings prepared by low temperature plasma enhanced chemical vapor deposition, Thin Solid Films 426 (2003), 150-159.
  • [140] M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, K. Nogi, Influence of sputtering conditions on the structure and properties of Ti-Si-N thin films prepared by r.f.-reactive sputtering, Surface and Coatings Technology 174-175(2003) , 261-265.
  • [141] M. Dudek. O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu, Effect of substrate bias on the microstructure and properties of nanocomposite titanium nitride - based films, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009), 416-421.
  • [142] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surface and Coatings Technology 125 (2000), 335-340.
  • [143] J.E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney, E.C. Aifantis, A simple, mixtures-based model for the grain size dependence of strength in nanophase metals, Nanostructured Materials 5 (1995), 441-448.
  • [144] Y. Ando, I. Sakomoto, I. Suzuki, S. Maruno, Resistivity and structural defects of reactively sputtered TiN and HfN films, Thin Solid Films 343-344 (1999), 246-249.
  • [145] T.-Sh. Yeh, J.-M. Wu, L.-J. Hu, The properties of TiN thin films deposited by pulsed direct current magnetron sputtering, Thin Solid Films 516 (2008), 7294-7298.
  • [146] S. Mitura, L. Klimek, Z. Haś, Etching and deposition in RF CH4 plasma, Thin Solid Films, 147 (1987), 83-92.
  • [147] Y.H. Lee, K.J. Bachmann, J.T. Glass, Y.M. LeGrice, R.J. Nemanich, Vapor deposition of diamond thin films on various substrates, Applied Physics Letters 57 (18) (1990), 1916-1918.
  • [148] S. Mitura, Znaczenie elektronów w procesie niskociśnieniowej syntezie diamentu, Wydawnictwo Politechniki Łódzkiej, Zeszyty Naukowe Nr 666, Łódź 1992.
  • [149] M.M. Morshed, D.C. Cameron, B.P. McNamara, M.S.J. Hashmi, Pre- treatment of substrates for improved adhesion of diamond-like carbon films on surgically implantable metals deposited by saddle field neutral beam source, Surface and Coatings technology 174-175 (2003), 579-583.
  • [150] P. Niedzielski, Warstwy węglowe na narzędziach skrawających, rozprawa habilitacyjna, Wydawnictwo Politechniki Łódzkiej, Zeszyty Naukowe Nr 955, Łódź 2005.
  • [151] B. Bubenzer, B. Dischler, G. Brandt, P. Koidl, RF plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications, Journal of Applied Physics 54 (1983), 4590-4595.
  • [152] A. von Keudell, Surface processes during thin-film growth, Plasma Sources Science and Technology 9 (2000), 455-467.
  • [153] B. Meyerson, F. Smith, Electrical and optical properties of hydrogenated amorphous carbon films, Journal of Non-Crystalline Solids 35/36 (1979), 435-440.
  • [154] A. Grill, V. Patel, Diamondlike Carbon Deposited by DC PACVD, Diamond films and technology 1 (1992), 219-233.
  • [155] M. Dudek. B. Więcek, Kontrola temperatury powierzchni próbki w procesie RF PECVD przy użyciu kamery termowizyjnej, Elektronika (L) 9 (2009), 37-39.
  • [156] Z. Has, S. Mitura, M. Cłapa, J. Szmidt, Electrical properties of thin carbon films obtained by R.F. methane decomposition on an R.F. -powered negatively self-biased electrode, Thin Solid Films 136 (1986), 161-166.
  • [157] S. Mitura, Z. Has, V.I. Gorokhovsky, System for depositing hard diamond-like films onto complex-shaped machine elements in an r.f. arc plasma, Surface and Coatings Technology 47 (1991), 106-112.
  • [158] J.R. Woodworth, M.E. Riley, D.C. Meister, B.P. Aragon, M.S. Le, H.H. Sawin, Ion energy and angular distributions in inductively coupled radio frequency discharges in argon, J. Appl. Phys. 80 (1996), 1304-1311.
  • [159] Y. Sun, T. Bell, Dry sliding wear resistance of low temperature plasma carburised austenitic stainless steel, Wear 253 (2002), 689-693.
  • [160] M. Tsujikawa, D. Yoshida, N. Yamauchi, N. Ueda, T. Sone, S. Tanaka, Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding, Surface and Coatings Technology 200 (2005), 507-511.
  • [161] Y. Sun, Kinetics of low temperature plasma carburizing of austenitic stainless steels Journal of Materials Processing Technology 168 (2005), 189-194.
  • [162] J. Ratajski, J. Tacikowski, M.A.J. Somers, Development of compound layer of iron (carbo)nitrides during nitriding of steel, Surface Engineering 19 (2003), 285-291.
  • [163] P. Kula, R. Pietrasik, K. Dybowski, Vacuum carburizing - Process optimization, Journal of Materials Processing Technology 164-165 (2005), 876-881.
  • [164] J. Ratajski, Relation between phase composition of compound zone and growth kinetics of diffusion zone during nitriding of steel, Surface and Coatings Technology 203 (2009), 2300-2306.
  • [165] T. Borowski, J. Jelenkowski, M. Psoda, T. Wierzchoń, Modifying the structure of glow discharge nitrided layers produced on high-nickel chromium-less steel with the participation of an athermal martensitic transformation, Surface and Coatings Technology 204 (2010), 1375-1379.
  • [166] M. Dudek. J. Sawicki, B. Wiecek, T. Swiatczak, Finite element modeling of stress variation in carbon films deposited on cannulated screw, Proceedings of VIII International Conference on Microtechnology and Thermal Problems in Electronics, Łódź 2009, 234-241.
  • [167] P. Niedzielski, J. Grabarczyk, M. Dudek. Warstwy nanokrystalicznego diamentu na narzędzia skrawąjace do obróbki materiałów drewnopodobnych, Inżynieria Materiałowa 3 (2000), 124-126.
  • [168] M. Śmietana, J. Szmidt, M. Dudek. P. Niedzielski, Optical properties of diamond-like cladding for optical fibres, Diamond and Related Materials 13(2004) , 954-95.
  • [169] T. Guzdek, J. Szmidt, M. Dudek. P. Niedzielski, NCD film as an active gate layer in chemFET structures, Diamond and Related Materials 13 (2004), 1059-1061.
  • [170] M. Śmietana, J. Szmidt, M. Dudek. P. Niedzielski, Właściwości warstw NCD jako pokryć włókien światłowodowych w zależności od parametrów procesu RF PCVD, Inżynieria Biomateriałów 35-36 (2004), 67-70.
  • [171] M. Słapa, J. Szmidt, A. Szczęsny, P. Śniecikowski, W. Czarnacki, M. Dudek. M. Traczyk, A. Werbowy, Ultra-thin nanocrystalline diamond detectors, Diamond and Related Materials 14 (2005), 125-128.
  • [172] M. Śmietana, J. Szmidt, M. Dudek. Application of Diamond-Like Carbon Film in Optical Waveguide Sensing System, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 200 Lee, Jay; Novikov, Nikolay (eds.), Springer 2005, p. 273.
  • [173] M. Śmietana, J. Szmidt, M. Dudek. Warstwa diamentopodobna jako obszar czynny dla czujników światłowodowych, Elektronika (XLVII) 2-3 (2005), 37-38.
  • [174] Kluba, D. Bociaga, M. Dudek. Hydrogenated amorphous carbon films deposited on 316L stainless steel, Diamond and Related Materialsl9 (2010), 533-536.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0020-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.