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Abstract—The  Advanced  Telecommunications  Computing
Architecture  (ATCA)  standard  describes  a  powerful  and
efficient  platform.  With  multiple  integrated  solutions  like
redundancies and intelligent control mechanisms this technology
is characterized with reliability estimated at the level of 99.99999
percent.  These  features  make  the  standard  perfect  for  use  in
projects like the Free Electron Laser in Hamburg (FLASH) and
the X-ray Free Electron Laser (X-FEL) in order to help them
meet the requirements of high availability and reliability.  The
ATCA standard incorporates advanced control systems defined
in  the  Intelligent  Platform  Management  Interface  (IPMI)
specification  as  one  of  the  key  elements.  The  entire  ATCA
implementation  retains  its  functionality  as  long  as  the  IPMI
remains  operational.  The  complexity  level  of  the  application
increases,  which results  in preparing it  to  run and debugging
being  more  difficult  to  perform.  At  the  same  time,  only
scrupulous elimination of any kind of possible deficiencies can
enable the ATCA implementation to offer  the desired level  of
reliability.  Thus,  diagnostics  become  crucial,  which  creates  a
need  for  additional  tools  performing  these  tasks  during  the
preparations  of  both  hardware  and  software  for  the  ATCA
application.

The paper presents application aiding in development of the
prototype Carrier  Board by  enabling the  user of  external  PC
station  to  perform  diagnostic  and  control  activities  over  the
Board. It helps in examining all its components at the stage of
running the Board, as well as in further operation analysis.

Index Terms—Advanced  Telecommunications  Computing
Architecture;  Intelligent  Platform  Management  Interface;
Carrier Board; EIA RS-232; Java; X-ray Free Electron Laser

I. INTRODUCTION

The  Advanced  Telecommunications  Computing
Architecture  (ATCA)  standard  includes  Intelligent  Platform
Management Interface (IPMI) as the platform control system
[1].  Thus,  each  Carrier  Board  (CB)  used  in  the  ATCA
implementation  is  required  to  be  equipped  with  an  IPMI
control unit. This unit is referred to as the Intelligent Platform
Management  Controller  (IPMC)  [2-4].  Primarily,  IPMC
communicates  with ATCA Shelf Manager over  a redundant
I2C bus [2, 5]. Apart from using this route, the prototype CB
by the Department of Microelectronics and Computer Science
(DMCS) [3, 5] is also able to exchange data with an external
PC station using the EIA RS-232 communication standard as
its secondary interface (Fig. 1).

Figure 1. The IPMI and serial connection of the ATCA Carrier Board

The IPMC on the DMCS prototype CB is implemented on
Atmel  Atmega1281  [6]  microcontroller  cooperating  with
Xilinx  Spartan  3  Field  Programmable  Gate  Array  (FPGA)
[3, 7]. The microcontroller can operate in two modes. In its
IPMC mode this serial connection is used only to transmit the
most important status messages (e.g. Field Replaceable Unit
(FRU) state changes after insertion). These messages do not
provide system operators with sufficient information in case of
failure  during  the  development  stage.  Therefore,  the
microcontroller  firmware  can  be replaced,  changing  its  role
from IPMC to a diagnostic processor. With the microcontroller
reprogrammed this way the Shelf Manager connection turns
inactive and the serial  connection with a PC becomes  fully
employed, giving more detailed diagnostics and possibility to
perform manual  control  over  the CB.  The CB can be then
detached from the ATCA system and, separately from it, every
CB device can be examined and manually configured. Such
possibility offers substantial aid at the stage of preparing the
system to run. With the serial connection it was possible to
create a software tool allowing the external PC user controlling
the CB and monitoring its status and activities.  This system
enables  the  user  to  easily  view  the  overall  state  of  the
operating CB,  read numerous of  its  parameters,  contents  of
registers, values of sensors and to perform direct control over
many of the CB aspects, like power management and devices
settings. This constitutes a tool that substantially simplifies the
process  of  diagnosing,  controlling  and  debugging  the  CB
operation.  The system is  composed of  two major  pieces  of
software.  One  operates  on  the  ATCA  Carrier  Board
microcontroller setting its role to diagnostic processor and the
other is a PC-side application.
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As the intention of the entire diagnostic system is to make
the task of controlling and debugging the IPMC and the entire
CB  operation  as  easy  and  simple  as  possible,  the  PC-side
software  was  designed  and  built  in  a  form  of  application
providing a Graphical User Interface (GUI), thus constituting a
user-friendly front-end to the system.

The  GUI  application  has  been  created  with  Java
programming language due to convenient methods of creating
graphical elements [8] that the language offers, suitable serial
communication  routines  implemented  [9]  and,  what  is  vital
from  the  perspective  of  usability,  the  application  operating
system independence [8].  The Java Development Kit (JDK)
used for the development process was in version 1.6.0 Update
11 (1.6.0_11).

II. COMMUNICATION PRINCIPLE OF DIAGNOSTIC SYSTEM

The communication between the GUI application running
on external PC and the CB diagnostic processor is based on
simple question-answer model.  The former is  the party that
generates queries to the diagnostic processor and waits until a
response comes. Therefore it can be described as master during
the  communication  process  (see  Fig.  1).  The  diagnostic
processor in turn, gathers the information needed from CB or
carries out an appropriate command and sends the requested
information or command execution confirmation back. It can
hence be described as slave (Fig. 1). The slave module never
transmits any data without prior request from master.

The architecture of protocol for communication between
master and slave is of custom design. It allows to exchange
substantial amount of information in a form of compact frames
(table I), without vast transmission overhead.

TABLE I. COMMUNICATION FRAMES FORMAT – REQUEST (LEFT), RESPONSE (RIGHT)

Byte 1 Start
signature Byte 1 Start

signature
Byte 2 Command Byte 2 Acknowledge

Byte 3 Data byte 1 Byte 3 Data byte 1

Byte 4 Data byte 2 Byte 4 Data byte 2

Byte 5 Data byte 3 Byte 5 Data byte 3

Byte 6 control sum Byte 6 control sum

Each frame consists of six bytes. The first one is always
the  same,  it  contains  a  fixed  number  (0x55)  indicating  the
beginning of a frame. Each pack of six bytes received by either
of the sides is tested for the first byte being equal 0x55 in order
to ensure that both sides maintain synchronization. 

There are two types of frames defined. The first one is a
request frame (table I – left). It is generated by the master. The
second byte of the frame contains two pieces of information.
The first  piece concerns the frame being either  a  query for
some CB value (a 'read' frame) or an activity to be performed
or a value to be stored on CB (a 'write' frame). This feature is
coded in the least significant bit of this byte (0 for write, 1 for
read).  The  other  piece  of  information  signifies  particular

command, indicating, which CB feature or device to examine
or to control. Every such command is coded using the seven
higher bits of this byte. The complete list and details of these
commands (including mnemonics used within the application)
are  presented  in  table  II.  The  subsequent  three  bytes  (data
bytes) of the frame can carry more precise request information,
e.g.  address of  particular  device register  to  read from or to
write to, a value to store. The last byte contains control sum to
ensure the validity of content of the rest of the frame.

TABLE II. REQUEST FRAME COMMANDS DETAILS

Command
Code (7 bits)

Command Mnemonic Command Description

"0011000" AMC_DIODES Read/set AMC diodes state

"0011001" AMC_SWITCHES Read AMC switches state

"0011010" POWER_GOOD Read  management  and  payload
power status for each AMC bay

"0011011" POWER_FLAGS Read  power  flags  state  for  each
AMC bay and the entire Board

"0011100" AMC_PRESENCE Read  AMC  presence  for  each
AMC bay

"0011101" AMC_POWERON Set  management  and  payload
power status for each AMC bay

"0011110" AMC_ENABLE Set AMC visibility for each AMC
bay

"0011111" ADC Read ADC values

"0100000" FPGA_POWER Read FPGA power status

"0100001" I2C_ENABLE Set AMC I2C connection status

"0100010" EXTRA_SWITCH Read Extra Switch state

"0100011" TEMP_MAX_1 MAX6626#1: Read/write register

"0100100" TEMP_MAX_2 MAX6626#2: Read/write register

"0100101" TEMP_MAX_3 MAX6683: Read/write register

"0100111" ATC210 ATC210: Read/write register

"0101000" READ_GA Read  Carrier  Board  Hardware
Address

TABLE III. RESPONSE FRAME COMPLETION CODES

Binary Character Mnemonic Description

"00110000" '0' FR_OK_INVALID Command
Acknowledgement -

ignore data bytes content

"00110001" '1' FR_OK_VALID Command
Acknowledgement - data

bytes valid

"00110010" '2' FR_ERROR Error

The  other  kind of  frame  is  a  response  frame (table  I  –
right). It is generated by the slave. The second byte contains
information named Completion Code, indicating whether the
requested  operation  succeeded  or  an  error  occurred.  It  also
determines  if  the  following  three  data  bytes  carry  valid
information  (which  is  the  case  when  e.g.  a  value  of  some
register  or  reading from a sensor  was requested)  or  can be
disregarded (e.g. when the command was to enable or disable
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some feature and only the completion information from the
second frame byte matters). The Completion Code is a single
piece of information occupying an entire byte, so in table III
each  Code  is  represented  twofold:  as  a  character  and  as  a
binary  number,  which  may  be  treated  as  an  ASCII  code
corresponding to that character. The last byte contains control
sum similarly to the request frame.

III. SLAVE CONTROLLER

The  CB  microcontroller  software  can  be  configured  to
work in two modes. One is the standard IPMC  mode, where
the IPMI commands are processed and all the activities dealing
with the IPMI standard are taken care of. The other one is the
diagnostic mode. In this mode the IPMI processing is turned
off  altogether  and  the  messages  of  interest  are  the  serial
messages coming from the PC GUI application.

Figure 2. Frame processing algorithm of diagnostic processor

The communication between master and slave is initialized
by exchanging a special block of data – a start frame. Slave
will not pay attention to any incoming messages until the start
frame is received. After this event all the bytes arriving on the
EIA RS-232 interface are treated as frames of six and analyzed
according  to  the  protocol.  If  the  frame starting  signature  is
confirmed and the control value is verified to be correct the
frame second byte (Command) is taken into consideration. The
software compares its value against a set of predefined values
representing all  the  supported  functions.  If  the  command is
recognized an appropriate procedure that implements the given
functionality is called.

The procedure may analyze the data bytes of the received
frame  if  they  are  necessary  to  complete  the  action  it  is
supposed to carry out.  Then, the function interacts with the
hardware gathering information about its state or changing it
according  to  the  command  received.  Upon  completion  a

response frame is created. Depending on the original command
the data bytes may be optionally filled with appropriate values
e.g. raw sensor reading, state of LEDs. The signature byte is
attached to the beginning of the message and the control sum
is calculated and suffixed to the frame. In such a way a six
byte  array  is  constructed  and  forwarded  to  the  functions
dealing with EIA RS-232 communication where they are sent
back to master.

The  algorithm  of  the  diagnostic  processor  software
operation is illustrated in Fig. 2.

IV. MASTER APPLICATION STRUCTURE IN OUTLINE

The  GUI  application  is  divided  into  three  modules  as
presented  in  Fig. 3.  Two  of  them,  Main  GUI  and  GUI
Components,   are  visible  to  the  user  and  together  they
compose the high-level GUI layer of the application. The third
module is responsible for communication.

The first module, Main GUI, is responsible for creation of
the  main  application  window,  which  is  visible  after  the
program  startup.  This  module  contains  routines  for
determining  settings  of  the  connection  with  diagnostic
processor,  establishing  and  ending  the  connection  and
monitoring the connection status during the program operation.
It  also  receives  internal  status  messages  and  alerts  from
routines across itself and other modules and displays them in
its Status Console in an easily readable manner. This enables
user to control and monitor the connection together with its
state and to supervise behavior of the entire application from
one place.

Figure 3. GUI application block diagram

The  second  module,  GUI  Components,  contains  all  the
application high-level  routines for  triggering the creation of
requests that are later packed into communication frames as
well as presenting information from the response frames in a
clear and comprehensible way. The main window created by
the Main GUI module contains block named Control Section,
which after the connection has been established gives the user
access  to  four  further  areas,  which  are  responsible  for
displaying  CB  state  information  and  switching  its  features.
These four windows are created by the GUI Components.

The  third  program  unit,  Communication  module,  is
separated  from the  GUI  part  and  hidden  from the  user.  It
includes  all  the  routines  for  handling  serial  port  and
performing  low-level  connection  control  and  supervision.  It
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also collects request details from the GUI modules, packs them
into  frames,  then transmits.  And in  the  opposite  way,  after
receiving data it performs frame validity check, then extracts
and processes its content and passes the results obtained to the
GUI modules.

Figure 4. GUI example - main window

Figure 5. GUI example - ADCs and FPGA section

Fig. 4 and Fig. 5 present exemplary snapshots of the GUI,
depicting  general  flavor  of  the  system  from  the  user's
perspective.  The first  represents  the program main window,
and  the  other  the  area  where  the  CB  Analog-to-Digital
Converter (ADC) values and FPGA power status is read.

A. The request frame transmission process overview
The Communication module itself is a hierarchical entity

with several levels of communication routines. The top-most
level of the module is an interface for communicating with the
GUI parts. This interface contains routines, which trigger the
process  of  request  frame  formation  and  transmission.
Invocations of these routines are intended to be placed within
appropriate GUI event processors, which are activated after a
button on some GUI element has been pressed. 

Each button on the GUI has a special item associated with
it. This item, called button listener, is activated every time the
button is pressed. Among the instructions executed by a button
listener there is an invocation of an appropriate routine from
the Communication module interface. Once a button has been
pressed, this routine calls lower-level mechanisms that resolve

the kind of request (i.e. whether it is a 'read' or 'write' one),
then determine the precise command code (indicating, which
CB device or feature this frame will refer to). These two pieces
of  information  are  then  coded  into  a  single  byte,  so  called
command byte. The button listener may also provide the high-
level communication routine with some additional information
(the case of some of 'write' frames, where it represent data to
be  transmitted,  and  some  of  'read'  frames,  where  e.g.  a
specified device register address in needed). This information
is to be later coded into three data bytes for the frame. The
lower-level  mechanisms  provide  a  generic  frame  from  a
blueprint  with  its  first  field  already  written  with  the  frame
signature.  Then  the  command  byte  is  placed  at  the  second
position, subsequently go the three data bytes and finally these
five bytes undergo control sum calculation, which is placed as
the sixth byte in the frame. With this process accomplished,
routines dealing directly with serial port are called to transmit
the formed frame.

B. The response frame reception and processing overview
When a request frame is sent, master waits for the response

frame from slave. Routines for handling the serial port listen
and expect six bytes to arrive. After receiving the sixth byte
the frame content is processed.

Initially the frame validity check is performed. It goes in
three steps:

� The frame signature is read. If it is invalid, that may
mean  that  master  and  slave  could  have  lost
synchronization between each other and resetting the
connection may be needed. In this case the rest of the
frame  is  disregarded  and  an  appropriate  message  is
sent  to  the  Status  Console  in  the  main  application
window.

� If the frame signature is correct, then all but the last
frame  byte  undergo  control  sum  calculation.  The
computed value is compared to the received control
value from the last frame byte. If not equal, that may
mean a transmission error has occurred and repeating
the request is advised. The frame is disregarded and an
appropriate message is sent to the Status Console in
the main application window.

� Passing the control sum test enables the application to
consider the received frame valid. The second frame
byte,  also  referred  to  as  Completion  Code,  is  then
examined. It can have one of three values (table III).
The value equal binary "00110010"  causes the frame to
be ignored and an appropriate message to be sent to
the Status Console  in  the main  application window.
Repeating the request is then advisable.

V. DIAGNOSTIC SYSTEM CAPABILITIES

The range of capabilities of the diagnostic system is strictly
related  to  hardware  installed  on  a  particular  CB.  The
equipment of the DMCS CB is discussed in [3] and [5]. The
functionality of the GUI application dedicated to this CB is
divided into four groups.
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A. AMC related
This set gathers all the options concerning AMC modules

placed in the CB AMC bays. These include:

� AMC  presence  -  for  retrieving  from  the  slave
information indicating whether AMC module presence
is detected in any of the bays

� AMC power control - allowing to query for or to set
the  AMC  modules  power  status.  The  management
power and the payload power for each of the AMC
bays  are  allowed  to  be  treated  independently  from
each  other  or  both  together,  subject  to  needs.  For
testing  purposes  power  can  be supplied  to  the  bays
independently of the presence of AMC modules. Also
AMC power flags state can be read. For each AMC
bay these  flags  inform on whether  the  management
power and the payload power after being turned on are
properly supplied to the bays. At this point it is also
possible to read status flags of each of the redundant
voltages supplied to the entire CB. If any of the two
voltages fail, these flags denote this fact.

� AMC enabling - when AMC module is present in bay
and powered, the user has an additional possibility to
toggle the module visibility in the system. Therefore,
the user can decide on AMC module to be detectable
for  the  diagnostic  processor  without  changing  its
power status or physically moving the device.

� I2C  enabling  -  allowing  to  enable  or  disable
communication with the diagnostic processor via I2C
bus  for  each  of  the  available  AMC  modules
individually

� AMC diodes  control  -  allowing to read and set  the
state of a cluster of LED diodes present near the AMC
bays.  These diodes  are  installed  on this  CB for  the
diode  operation  test  purposes  only,  but  in  further
designs they are intended to be employed as AMC or
CB state or signal indicators.

� AMC switches control – allowing to read the status,
and  therefore  to  test  the  operation  of  a  group  of
switches  present  near  the  AMC  bays.  In  further
designs  they are  intended to be given the ability  to
trigger or alter certain CB aspects.

B. MAX sensors related
The DMCS CB is equipped with two Maxim MAX6626

temperature  sensors  [10]  and  one  Maxim  MAX6683
temperature/voltage monitor [11]. The diagnostic application
enables  reading  any  of  the  registers  of  these  devices  and
storing  data  to  any  of  their  writable  registers  [10,  11].
Therefore these sensors can be conveniently configured and
their readings immediately fetched.

C. ATC210 converter related
The prototype CB is also provided with Artesyn ATC210

Dual Input Bus Converter [12]. Similarly, as with the MAX

sensors, the diagnostic application grants reading and, where it
is  possible,  writing access to  the device registers  [12],  thus
simplifying configuration and readings fetching.

D. ADCs and FPGA related
This group relates to features chosen not to be assigned to

any of the previous groups. The GUI window corresponding to
this group is depicted in Fig. 5. The options include: 

� ADC readings -  for  displaying values  of  voltage
measured by four channels of ADC integrated in the
Atmel microcontroller [6].

� FPGA power -  for  retrieving  information  on
power status of the Xilinx Spartan FPGA [7]

� Extra Switch -  for  detecting  and  displaying  the
state of the Extra Switch, a small entity for testing the
on-board  switch  functionality  for  the  purpose  of
further applications

Apart  from  aforementioned  functionality,  the  diagnostic
application is also able to determine the Hardware Address of
the examined CB. This is done at the stage of setting up the
diagnostic connection and the address is displayed beneath the
Status Console in the GUI main window (see Fig. 4).

VI. CONCLUSIONS

Currently  the  diagnostic  application  exists  in  a  version
dedicated to the prototype Carrier Board, as the program shape
and functionality strictly depends on the collection of hardware
installed on a particular CB. This is particularly important in
the context of a fact, that the design of successive versions of
the CB undergoes constant development and their  hardware
layer  changes.  The  Atmel  microcontroller  and  the  Xilinx
FPGA  are  planned  to  be  abandoned  in  fulfilling  the
functionality  of  the  IPMC  and  replaced  with  Renesas
microcontroller. The EIA RS-232 communication standard is
also  intended  to  be  replaced  with  faster  and  more  reliable
USB. These factors,  together  with  successive devices being
incorporated in  CB design during the development  process,
have substantial impact on the diagnostic system shape. The
design  of  the  application,  however,  enables  it  to  be  easily
customized for the use with future Carrier Boards.

Several  acceptance  tests  proved  the  functionality  of  the
diagnostic  system.  The  use  of  the  application  during  the
prototype CB development process confirmed its usefulness,
simplified debugging procedures and reduced the time costs of
running the device.

There  are  plans  to  implement  the  functionality  of  both
IPMC and diagnostic processor in a single software entity. The
new microcontroller programmed this way would not need to
be reprogrammed in order to switch from one role to another.
Instead, there might be an additional toggle switch installed on
CB,  which  would  trigger  the  microcontroller  functionality
transition. This combined with customizable architecture of the
presented application makes it a handy tool for diagnostics and
debugging all the Carrier Boards intended to be used in this
ATCA implementation.
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