
Diagnostic Application for Development
of Custom ATCA Carrier Board for LLRF
Jan Wychowaniak, Pawe� Pr�dki, Dariusz Makowski, Bartosz Sakowicz, Andrzej Napieralski

Department of Microelectronics and Computer Science
Technical University of Lodz

Lodz, Poland
jan.wychowaniak@gmail.com

Abstract—The Advanced Telecommunications Computing
Architecture (ATCA) standard describes a powerful and
efficient platform. With multiple integrated solutions like
redundancies and intelligent control mechanisms this technology
is characterized with reliability estimated at the level of 99.99999
percent. These features make the standard perfect for use in
projects like the Free Electron Laser in Hamburg (FLASH) and
the X-ray Free Electron Laser (X-FEL) in order to help them
meet the requirements of high availability and reliability. The
ATCA standard incorporates advanced control systems defined
in the Intelligent Platform Management Interface (IPMI)
specification as one of the key elements. The entire ATCA
implementation retains its functionality as long as the IPMI
remains operational. The complexity level of the application
increases, which results in preparing it to run and debugging
being more difficult to perform. At the same time, only
scrupulous elimination of any kind of possible deficiencies can
enable the ATCA implementation to offer the desired level of
reliability. Thus, diagnostics become crucial, which creates a
need for additional tools performing these tasks during the
preparations of both hardware and software for the ATCA
application.

The paper presents application aiding in development of the
prototype Carrier Board by enabling the user of external PC
station to perform diagnostic and control activities over the
Board. It helps in examining all its components at the stage of
running the Board, as well as in further operation analysis.

Index Terms—Advanced Telecommunications Computing
Architecture; Intelligent Platform Management Interface;
Carrier Board; EIA RS-232; Java; X-ray Free Electron Laser

I. INTRODUCTION

The Advanced Telecommunications Computing
Architecture (ATCA) standard includes Intelligent Platform
Management Interface (IPMI) as the platform control system
[1]. Thus, each Carrier Board (CB) used in the ATCA
implementation is required to be equipped with an IPMI
control unit. This unit is referred to as the Intelligent Platform
Management Controller (IPMC) [2-4]. Primarily, IPMC
communicates with ATCA Shelf Manager over a redundant
I2C bus [2, 5]. Apart from using this route, the prototype CB
by the Department of Microelectronics and Computer Science
(DMCS) [3, 5] is also able to exchange data with an external
PC station using the EIA RS-232 communication standard as
its secondary interface (Fig. 1).

Figure 1. The IPMI and serial connection of the ATCA Carrier Board

The IPMC on the DMCS prototype CB is implemented on
Atmel Atmega1281 [6] microcontroller cooperating with
Xilinx Spartan 3 Field Programmable Gate Array (FPGA)
[3, 7]. The microcontroller can operate in two modes. In its
IPMC mode this serial connection is used only to transmit the
most important status messages (e.g. Field Replaceable Unit
(FRU) state changes after insertion). These messages do not
provide system operators with sufficient information in case of
failure during the development stage. Therefore, the
microcontroller firmware can be replaced, changing its role
from IPMC to a diagnostic processor. With the microcontroller
reprogrammed this way the Shelf Manager connection turns
inactive and the serial connection with a PC becomes fully
employed, giving more detailed diagnostics and possibility to
perform manual control over the CB. The CB can be then
detached from the ATCA system and, separately from it, every
CB device can be examined and manually configured. Such
possibility offers substantial aid at the stage of preparing the
system to run. With the serial connection it was possible to
create a software tool allowing the external PC user controlling
the CB and monitoring its status and activities. This system
enables the user to easily view the overall state of the
operating CB, read numerous of its parameters, contents of
registers, values of sensors and to perform direct control over
many of the CB aspects, like power management and devices
settings. This constitutes a tool that substantially simplifies the
process of diagnosing, controlling and debugging the CB
operation. The system is composed of two major pieces of
software. One operates on the ATCA Carrier Board
microcontroller setting its role to diagnostic processor and the
other is a PC-side application.

������	��
�	� �

��	�
� ����
������
���� 	�� �
��
��� �������� �
�� �� �
� �� ���� ��

�������	
 � �
�
 �� �����
���
 �� ���������
������ � �����
�� �������� ���	����� ��� ����
� �� !�"#

As the intention of the entire diagnostic system is to make
the task of controlling and debugging the IPMC and the entire
CB operation as easy and simple as possible, the PC-side
software was designed and built in a form of application
providing a Graphical User Interface (GUI), thus constituting a
user-friendly front-end to the system.

The GUI application has been created with Java
programming language due to convenient methods of creating
graphical elements [8] that the language offers, suitable serial
communication routines implemented [9] and, what is vital
from the perspective of usability, the application operating
system independence [8]. The Java Development Kit (JDK)
used for the development process was in version 1.6.0 Update
11 (1.6.0_11).

II. COMMUNICATION PRINCIPLE OF DIAGNOSTIC SYSTEM

The communication between the GUI application running
on external PC and the CB diagnostic processor is based on
simple question-answer model. The former is the party that
generates queries to the diagnostic processor and waits until a
response comes. Therefore it can be described as master during
the communication process (see Fig. 1). The diagnostic
processor in turn, gathers the information needed from CB or
carries out an appropriate command and sends the requested
information or command execution confirmation back. It can
hence be described as slave (Fig. 1). The slave module never
transmits any data without prior request from master.

The architecture of protocol for communication between
master and slave is of custom design. It allows to exchange
substantial amount of information in a form of compact frames
(table I), without vast transmission overhead.

TABLE I. COMMUNICATION FRAMES FORMAT – REQUEST (LEFT), RESPONSE (RIGHT)

Byte 1 Start
signature Byte 1 Start

signature
Byte 2 Command Byte 2 Acknowledge

Byte 3 Data byte 1 Byte 3 Data byte 1

Byte 4 Data byte 2 Byte 4 Data byte 2

Byte 5 Data byte 3 Byte 5 Data byte 3

Byte 6 control sum Byte 6 control sum

Each frame consists of six bytes. The first one is always
the same, it contains a fixed number (0x55) indicating the
beginning of a frame. Each pack of six bytes received by either
of the sides is tested for the first byte being equal 0x55 in order
to ensure that both sides maintain synchronization.

There are two types of frames defined. The first one is a
request frame (table I – left). It is generated by the master. The
second byte of the frame contains two pieces of information.
The first piece concerns the frame being either a query for
some CB value (a 'read' frame) or an activity to be performed
or a value to be stored on CB (a 'write' frame). This feature is
coded in the least significant bit of this byte (0 for write, 1 for
read). The other piece of information signifies particular

command, indicating, which CB feature or device to examine
or to control. Every such command is coded using the seven
higher bits of this byte. The complete list and details of these
commands (including mnemonics used within the application)
are presented in table II. The subsequent three bytes (data
bytes) of the frame can carry more precise request information,
e.g. address of particular device register to read from or to
write to, a value to store. The last byte contains control sum to
ensure the validity of content of the rest of the frame.

TABLE II. REQUEST FRAME COMMANDS DETAILS

Command
Code (7 bits)

Command Mnemonic Command Description

"0011000" AMC_DIODES Read/set AMC diodes state

"0011001" AMC_SWITCHES Read AMC switches state

"0011010" POWER_GOOD Read management and payload
power status for each AMC bay

"0011011" POWER_FLAGS Read power flags state for each
AMC bay and the entire Board

"0011100" AMC_PRESENCE Read AMC presence for each
AMC bay

"0011101" AMC_POWERON Set management and payload
power status for each AMC bay

"0011110" AMC_ENABLE Set AMC visibility for each AMC
bay

"0011111" ADC Read ADC values

"0100000" FPGA_POWER Read FPGA power status

"0100001" I2C_ENABLE Set AMC I2C connection status

"0100010" EXTRA_SWITCH Read Extra Switch state

"0100011" TEMP_MAX_1 MAX6626#1: Read/write register

"0100100" TEMP_MAX_2 MAX6626#2: Read/write register

"0100101" TEMP_MAX_3 MAX6683: Read/write register

"0100111" ATC210 ATC210: Read/write register

"0101000" READ_GA Read Carrier Board Hardware
Address

TABLE III. RESPONSE FRAME COMPLETION CODES

Binary Character Mnemonic Description

"00110000" '0' FR_OK_INVALID Command
Acknowledgement -

ignore data bytes content

"00110001" '1' FR_OK_VALID Command
Acknowledgement - data

bytes valid

"00110010" '2' FR_ERROR Error

The other kind of frame is a response frame (table I –
right). It is generated by the slave. The second byte contains
information named Completion Code, indicating whether the
requested operation succeeded or an error occurred. It also
determines if the following three data bytes carry valid
information (which is the case when e.g. a value of some
register or reading from a sensor was requested) or can be
disregarded (e.g. when the command was to enable or disable

��� ����
�	��	� �! $%�& ��	*�
���� 	�����	��
� �
� �����
�����
� �
��
� 	��	 �	����� +
	�� �
� ����

some feature and only the completion information from the
second frame byte matters). The Completion Code is a single
piece of information occupying an entire byte, so in table III
each Code is represented twofold: as a character and as a
binary number, which may be treated as an ASCII code
corresponding to that character. The last byte contains control
sum similarly to the request frame.

III. SLAVE CONTROLLER

The CB microcontroller software can be configured to
work in two modes. One is the standard IPMC mode, where
the IPMI commands are processed and all the activities dealing
with the IPMI standard are taken care of. The other one is the
diagnostic mode. In this mode the IPMI processing is turned
off altogether and the messages of interest are the serial
messages coming from the PC GUI application.

Figure 2. Frame processing algorithm of diagnostic processor

The communication between master and slave is initialized
by exchanging a special block of data – a start frame. Slave
will not pay attention to any incoming messages until the start
frame is received. After this event all the bytes arriving on the
EIA RS-232 interface are treated as frames of six and analyzed
according to the protocol. If the frame starting signature is
confirmed and the control value is verified to be correct the
frame second byte (Command) is taken into consideration. The
software compares its value against a set of predefined values
representing all the supported functions. If the command is
recognized an appropriate procedure that implements the given
functionality is called.

The procedure may analyze the data bytes of the received
frame if they are necessary to complete the action it is
supposed to carry out. Then, the function interacts with the
hardware gathering information about its state or changing it
according to the command received. Upon completion a

response frame is created. Depending on the original command
the data bytes may be optionally filled with appropriate values
e.g. raw sensor reading, state of LEDs. The signature byte is
attached to the beginning of the message and the control sum
is calculated and suffixed to the frame. In such a way a six
byte array is constructed and forwarded to the functions
dealing with EIA RS-232 communication where they are sent
back to master.

The algorithm of the diagnostic processor software
operation is illustrated in Fig. 2.

IV. MASTER APPLICATION STRUCTURE IN OUTLINE

The GUI application is divided into three modules as
presented in Fig. 3. Two of them, Main GUI and GUI
Components, are visible to the user and together they
compose the high-level GUI layer of the application. The third
module is responsible for communication.

The first module, Main GUI, is responsible for creation of
the main application window, which is visible after the
program startup. This module contains routines for
determining settings of the connection with diagnostic
processor, establishing and ending the connection and
monitoring the connection status during the program operation.
It also receives internal status messages and alerts from
routines across itself and other modules and displays them in
its Status Console in an easily readable manner. This enables
user to control and monitor the connection together with its
state and to supervise behavior of the entire application from
one place.

Figure 3. GUI application block diagram

The second module, GUI Components, contains all the
application high-level routines for triggering the creation of
requests that are later packed into communication frames as
well as presenting information from the response frames in a
clear and comprehensible way. The main window created by
the Main GUI module contains block named Control Section,
which after the connection has been established gives the user
access to four further areas, which are responsible for
displaying CB state information and switching its features.
These four windows are created by the GUI Components.

The third program unit, Communication module, is
separated from the GUI part and hidden from the user. It
includes all the routines for handling serial port and
performing low-level connection control and supervision. It

������	��
�	� �

��	�
� ����
������
���� 	�� �
��
��� �������� �
�� �� �
� �� ���� ���

also collects request details from the GUI modules, packs them
into frames, then transmits. And in the opposite way, after
receiving data it performs frame validity check, then extracts
and processes its content and passes the results obtained to the
GUI modules.

Figure 4. GUI example - main window

Figure 5. GUI example - ADCs and FPGA section

Fig. 4 and Fig. 5 present exemplary snapshots of the GUI,
depicting general flavor of the system from the user's
perspective. The first represents the program main window,
and the other the area where the CB Analog-to-Digital
Converter (ADC) values and FPGA power status is read.

A. The request frame transmission process overview
The Communication module itself is a hierarchical entity

with several levels of communication routines. The top-most
level of the module is an interface for communicating with the
GUI parts. This interface contains routines, which trigger the
process of request frame formation and transmission.
Invocations of these routines are intended to be placed within
appropriate GUI event processors, which are activated after a
button on some GUI element has been pressed.

Each button on the GUI has a special item associated with
it. This item, called button listener, is activated every time the
button is pressed. Among the instructions executed by a button
listener there is an invocation of an appropriate routine from
the Communication module interface. Once a button has been
pressed, this routine calls lower-level mechanisms that resolve

the kind of request (i.e. whether it is a 'read' or 'write' one),
then determine the precise command code (indicating, which
CB device or feature this frame will refer to). These two pieces
of information are then coded into a single byte, so called
command byte. The button listener may also provide the high-
level communication routine with some additional information
(the case of some of 'write' frames, where it represent data to
be transmitted, and some of 'read' frames, where e.g. a
specified device register address in needed). This information
is to be later coded into three data bytes for the frame. The
lower-level mechanisms provide a generic frame from a
blueprint with its first field already written with the frame
signature. Then the command byte is placed at the second
position, subsequently go the three data bytes and finally these
five bytes undergo control sum calculation, which is placed as
the sixth byte in the frame. With this process accomplished,
routines dealing directly with serial port are called to transmit
the formed frame.

B. The response frame reception and processing overview
When a request frame is sent, master waits for the response

frame from slave. Routines for handling the serial port listen
and expect six bytes to arrive. After receiving the sixth byte
the frame content is processed.

Initially the frame validity check is performed. It goes in
three steps:

� The frame signature is read. If it is invalid, that may
mean that master and slave could have lost
synchronization between each other and resetting the
connection may be needed. In this case the rest of the
frame is disregarded and an appropriate message is
sent to the Status Console in the main application
window.

� If the frame signature is correct, then all but the last
frame byte undergo control sum calculation. The
computed value is compared to the received control
value from the last frame byte. If not equal, that may
mean a transmission error has occurred and repeating
the request is advised. The frame is disregarded and an
appropriate message is sent to the Status Console in
the main application window.

� Passing the control sum test enables the application to
consider the received frame valid. The second frame
byte, also referred to as Completion Code, is then
examined. It can have one of three values (table III).
The value equal binary "00110010" causes the frame to
be ignored and an appropriate message to be sent to
the Status Console in the main application window.
Repeating the request is then advisable.

V. DIAGNOSTIC SYSTEM CAPABILITIES

The range of capabilities of the diagnostic system is strictly
related to hardware installed on a particular CB. The
equipment of the DMCS CB is discussed in [3] and [5]. The
functionality of the GUI application dedicated to this CB is
divided into four groups.

��� ����
�	��	� �! $%�& ��	*�
���� 	�����	��
� �
� �����
�����
� �
��
� 	��	 �	����� +
	�� �
� ����

A. AMC related
This set gathers all the options concerning AMC modules

placed in the CB AMC bays. These include:

� AMC presence - for retrieving from the slave
information indicating whether AMC module presence
is detected in any of the bays

� AMC power control - allowing to query for or to set
the AMC modules power status. The management
power and the payload power for each of the AMC
bays are allowed to be treated independently from
each other or both together, subject to needs. For
testing purposes power can be supplied to the bays
independently of the presence of AMC modules. Also
AMC power flags state can be read. For each AMC
bay these flags inform on whether the management
power and the payload power after being turned on are
properly supplied to the bays. At this point it is also
possible to read status flags of each of the redundant
voltages supplied to the entire CB. If any of the two
voltages fail, these flags denote this fact.

� AMC enabling - when AMC module is present in bay
and powered, the user has an additional possibility to
toggle the module visibility in the system. Therefore,
the user can decide on AMC module to be detectable
for the diagnostic processor without changing its
power status or physically moving the device.

� I2C enabling - allowing to enable or disable
communication with the diagnostic processor via I2C
bus for each of the available AMC modules
individually

� AMC diodes control - allowing to read and set the
state of a cluster of LED diodes present near the AMC
bays. These diodes are installed on this CB for the
diode operation test purposes only, but in further
designs they are intended to be employed as AMC or
CB state or signal indicators.

� AMC switches control – allowing to read the status,
and therefore to test the operation of a group of
switches present near the AMC bays. In further
designs they are intended to be given the ability to
trigger or alter certain CB aspects.

B. MAX sensors related
The DMCS CB is equipped with two Maxim MAX6626

temperature sensors [10] and one Maxim MAX6683
temperature/voltage monitor [11]. The diagnostic application
enables reading any of the registers of these devices and
storing data to any of their writable registers [10, 11].
Therefore these sensors can be conveniently configured and
their readings immediately fetched.

C. ATC210 converter related
The prototype CB is also provided with Artesyn ATC210

Dual Input Bus Converter [12]. Similarly, as with the MAX

sensors, the diagnostic application grants reading and, where it
is possible, writing access to the device registers [12], thus
simplifying configuration and readings fetching.

D. ADCs and FPGA related
This group relates to features chosen not to be assigned to

any of the previous groups. The GUI window corresponding to
this group is depicted in Fig. 5. The options include:

� ADC readings - for displaying values of voltage
measured by four channels of ADC integrated in the
Atmel microcontroller [6].

� FPGA power - for retrieving information on
power status of the Xilinx Spartan FPGA [7]

� Extra Switch - for detecting and displaying the
state of the Extra Switch, a small entity for testing the
on-board switch functionality for the purpose of
further applications

Apart from aforementioned functionality, the diagnostic
application is also able to determine the Hardware Address of
the examined CB. This is done at the stage of setting up the
diagnostic connection and the address is displayed beneath the
Status Console in the GUI main window (see Fig. 4).

VI. CONCLUSIONS

Currently the diagnostic application exists in a version
dedicated to the prototype Carrier Board, as the program shape
and functionality strictly depends on the collection of hardware
installed on a particular CB. This is particularly important in
the context of a fact, that the design of successive versions of
the CB undergoes constant development and their hardware
layer changes. The Atmel microcontroller and the Xilinx
FPGA are planned to be abandoned in fulfilling the
functionality of the IPMC and replaced with Renesas
microcontroller. The EIA RS-232 communication standard is
also intended to be replaced with faster and more reliable
USB. These factors, together with successive devices being
incorporated in CB design during the development process,
have substantial impact on the diagnostic system shape. The
design of the application, however, enables it to be easily
customized for the use with future Carrier Boards.

Several acceptance tests proved the functionality of the
diagnostic system. The use of the application during the
prototype CB development process confirmed its usefulness,
simplified debugging procedures and reduced the time costs of
running the device.

There are plans to implement the functionality of both
IPMC and diagnostic processor in a single software entity. The
new microcontroller programmed this way would not need to
be reprogrammed in order to switch from one role to another.
Instead, there might be an additional toggle switch installed on
CB, which would trigger the microcontroller functionality
transition. This combined with customizable architecture of the
presented application makes it a handy tool for diagnostics and
debugging all the Carrier Boards intended to be used in this
ATCA implementation.

������	��
�	� �

��	�
� ����
������
���� 	�� �
��
��� �������� �
�� �� �
� �� ���� ��;

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Commission under the EuCARD FP7
Research Infrastructures grant agreement no. 227579 and
Polish National Science Council Grant 642/N-TESLA-XFEL/
09/2010/0. The authors are scholarship holders of project
entitled "Innovative education ..." supported by European
Social Fund.

REFERENCES

[1] AdvancedTCA PICMG 3.0 Revision 2.0, “AdvancedTCA Base
Specification”, 28 October 2005

[2] Intel Hewlett-Packard NEC DELL, “Intelligent Platform Management
Specification version 1.5”, Document Revision 1.1, 20 February 2002

[3] Zawada, A., Makowski, D., Jezynski, T., Simrock, S., Napieralski, A.,
"ATCA Carrier Board with IPMI supervisory circuit", Mixed Design of
Integrated Circuits and Systems, 2008. MIXDES 2008. 15th
International Conference on 19-21 June 2008 Page(s):101 – 105

[4] Makowski, D., Koprek, W., Jezynski, T., Piotrowski, A., Jablonski, G.
Jalmuzna, W., Simrock, S. "Interfaces and communication protocols in
ATCA-based LLRF control systems", Nuclear Science Symposium
Conference Record, 2008. NSS '08. IEEE, 19-25 Oct. 2008 Page(s):32–37

[5] Zawada, A.; Makowski, D.; Jezynski, T.; Simrock, S.; Napieralski, A.
"Prototype AdvancedTCA Carrier Board with three AMC bays",
Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE,
19-25 Oct. 2008 Page(s):53 – 57

[6] Atmel Corporation, “ATmega640/1280/1281/2560/2561”, Rev. 2549L,
August 2007,
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf

[7] Xilinx Incorporation, “Spartan-3 FPGA Family Data Sheet”, June 2008,
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

[8] B. Eckel, "Thinking in Java", 4th Edition, Prentice Hall, 2006
[9] I. Darwin, "Java Cookbook" O'Reilly, 2001
[10] Maxim Integrated Products, “MAX6625/MAX6626”, Rev. 4, October

2006, http://datasheets.maxim-ic.com/en/ds/MAX6625-MAX6626.pdf
[11] Maxim Integrated Products, “MAX6683”, Rev. 1, July 2004,

http://datasheets.maxim-ic.com/en/ds/MAX6683.pdf
[12] Artesyn Technologies, “ATC210 Dual Input Bus Converter I2C Serial

Bus Interface Application Note 206”, 16 August 2006,
www.artesyn.com/assets/an_atc210_software_1199485474_techref.pdf

��= ����
�	��	� �! $%�& ��	*�
���� 	�����	��
� �
� �����
�����
� �
��
� 	��	 �	����� +
	�� �
� ����

