PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Some algebraic properties of the Wiener-Laplace algebra

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
We denote by W+(C+) the set of all complex-valued functions defined in the losed right half plane C+ := {s ∈ C | Re(s) ≥ 0} that differ from the Laplace transform of functions from L1 (O, ∞) by a constant. Equipped with pointwise operations, W+(C+) forms a ring. It is known that W + (C+) is a pre-Bézout ring. The following properties are shown for W+(C+): W+(C+) is not a GCD domain, that is, there exist functions F1, F2 in W+(C+) that do not possess a greatest common divisor in W + (C+). W+(C+) is not coherent, and in fact, we give an example of two principal ideals whose intersection is not finitely generated. We will also observe that W+(C+) is a Hermite ring, by showing that the maximal ideal space of W+(C+), equipped with the Gelfand topology, is contractible.
Wydawca
Rocznik
Strony
79--94
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
autor
Bibliografia
  • [1] A. Browder. Introduction to Function Algebras. W.A. Benjamin, Inc., New York, 1969.
  • [2] V. M. Faivyševskii. The structure of the ideals of certain algebras of analytic functions. (Russian) Dokl. Akad. Nauk SSSR, 211:537-539, 1973. English translation in Soviet Math. Dokl., 14:1067-1070, 1973.
  • [3] I. Gelfand, D. Raikov and G. Shilov. Commutative Normed Rings. Chelsea Publ. Comp. New York, 1964.
  • [4] V. P. Havin, S. V. Hruščëy and N. K. Nikorskii (Editors). Linear and complex analysis problem book. Lecture Notes in Mathematics, 1043, Springer-Verlag, Berlin, 1984.
  • [5] U. Klein. On the Taylor coefficients of a class of smooth functions. Unpublished manuscript, 1995.
  • [6] V. Ya. Lin. Holomorphic fiberings and multivalued functions of elements of a Banach algebra. Functional Analysis and its Applications, no. 2, 7:122-128, 1973, English translation.
  • [7] H. Matsumura. Commutative ring theory. Translated from the Japanese by M. Reid. Second edition. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1989.
  • [8] W. S. McVoy and L. A. Rubel. Coherence of some rings of functions. Journal of Functional Analysis, no. 1,21:76-87, 1976.
  • [9] K. M. Mikkola and A. J. Sasane. Bass and topological stable ranks of complex and real algebras of measures, functions and sequences. Complex Analysis and Operator Theory, 4:401-448, 2010.
  • [10] R. Mortini and M. von Renteln. Ideals in the Wiener algebra W+. Journal of the Australian Mathematical Society (Series A), 46: 220-228, 1990.
  • [11] R. Mortini and A. J. Sasane. On the pre-Bézout property of Wiener algebras on the disc and the half-plane; New Zealand J., Math., 38:45-55, 2008.
  • [12] N. K. Nikol'skii. Treatise on the Shift Operator. Spectral Function Theory. With an appendix by S. V. Khrushchëv and V. V. Peller. Translated from the Russian by Jaak Peetre. Grundlehren der Mathematischen Wissenschaften, 273, Springer-Verlag, Berlin, 1986.
  • [13] A. Quadrat. On a generalization of the Youla-Kučera parametrization. Part I: The fractional ideal approach to SISO systems. Systems and Control Letters, 50:135-148, no. 2, 2003.
  • [14] A. Quadrat. An introduction to internal stabilization of linear infinite dimensional systems. École Internationale d'Automatique de Lilie (02-06/09/02): Contrôle de systemes a parametres répartis: Théorie et Applications, Revue e-STA, vol. l, no. l, 2002.
  • [15] A. Quadrat. The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part I: (Weakly) doubly coprime factorizations. SIAM Journal on Control and Optimization, 42:266-299, 2003.
  • [16] M. von Renteln. Divisibility structure and finitely generated ideals in the disc algebra. Monatshefte für Mathematik, 82:51-56, 1976.
  • [17] M. von Renteln. Hauptideale und äussere Funktionen im Ring H?. (German) Archiv der Mathematik (Basel), no. 5, 28:519-524, 1977.
  • [18] A. J. Sasane. Noncoherence of a causal Wiener algebra used in control theory. Abstract and Applied Analysis, Volume 2008, Article ID 459310, 13 pages.
  • [19] A. J. Sasane. The Hermite property of a causal Wiener algebra used in control theory. Complex Analysis and Operator Theory, 4:197-207, 2010.
  • [20] G. Szegő. Orthogonal Polynomials. Amererican Mathematical Society Colloquium Publications, 23, New York, 1959.
  • [21] V. Tolokonnikov. Extension problem to an invertible matrix. Proc. Amer. Math. Soc., 117:1023-1030, 1993.
  • [22] V. Tolokonnikov. Stable rank of H? in multiply connected domains. Proc. Amer. Math. Soc., 123:3151-3156, no. 10, 1995.
  • [23] N. Th. Varopoulos. Sur les formes positives d'une algebre de Banach. (French) Comptes Rendus Acad. Sci. Paris, 258:2465-2467, Groupe l, 1964.
  • [24] M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press Series in Signal Processing, Optimization, and Control, 7, MIT Press, Cambridge, MA, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0017-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.