Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Motion of gas bubbles in highly viscous liquids in the field of centrifugal forces
Języki publikacji
Abstrakty
Praca dotyczy ruchu pęcherzy gazowych w polu sił odśrodkowych w płynach o bardzo wysokiej lepkości - newtonowskich, nienewtonowskich rozrzedzanych ścinaniem i plastycznolepkich. Głównym celem pracy jest określenie warunków oddzielania pęcherzy od takich płynów z użyciem wirówki i zbadanie wpływu zwiększonych sił masowych w wirówce na zjawiska powierzchniowe, prowadzące do unieruchomienia powierzchni poruszającego się pęcherza. Opracowano metodę obliczania czasu potrzebnego do usunięcia za pomocą wirówki pęcherza w płynach newtonowskich, nienewtonowskich bez granicy płynięcia opisanych równaniem potęgowym i plastycznolepkich opisanych równaniem Herschela-Bulkleya, potwierdzono ją doświadczalnie dla płynów newtonowskich i nienewtonowskich bez granicy płynięcia. W przypadku płynów plastycznolepkich zaproponowana metoda okazała się zadowalająca jedynie w dostatecznie dużej odległości od miejsca ostatecznego zatrzymania pęcherza, w którym pozostaje on nieruchomy mimo działającej na niego siły wyporu. Wykazano, że pęcherze gazowe poruszające się w substancji plastycznolepkiej przybierają kształt wydłużony. Sformułowano postaci kryterium ruchu - warunku, który musi być spełniony, aby pęcherz mógł się poruszać w substancji plastycznolepkiej, dla pęcherzy o kształcie wydłużonym i kulistym, z powierzchnią swobodną i unieruchomioną. Określono wartość tego kryterium na drodze teoretycznej i wyznaczono je na drodze eksperymentu. Wyznaczono też warunek rozpoczęcia ruchu pęcherzy o kształcie nieregularnym, typowym dla pęcherzy w substancjach plastycznolepkich przed rozpoczęciem ich ruchu. Badania ruchu pęcherzy w wirówce wykazały, że unieruchomienie powierzchni pęcherza, prowadzące do spadku prędkości jego ruchu jest w wirówce trudniejsze, niż w polu grawitacyjnym - wzrost przyspieszenia odśrodkowego powoduje przejście powierzchni ze stanu unieruchomionego w swobodny. Wprowadzono pojęcie bezwymiarowej średnicy pęcherza, które pozwoliło uogólnić warunek unieruchomienia powierzchni w polu grawitacyjnym na pole sił odśrodkowych. Wykazano na drodze teoretycznej możliwość ruchu pęcherzy gazowych w dół w polu grawitacyjnym w cieczy w warunkach izotermicznych, jeśli przedtem pęcherz poddany był działaniu siły odśrodkowej i potwierdzono występowanie takiego zjawiska doświadczalnie. Stwierdzono, że zjawisko takie zachodzi, jeśli podczas odwirowywania pęcherza jego powierzchnia była chociaż częściowo unieruchomiona przez gradient napięcia powierzchniowego. Pozwala to sądzić, że zgodnie z przedstawioną teorią, taki wymuszony ruch pęcherza w dół jest spowodowany zjawiskami powierzchniowymi, takimi samymi, jakie prowadzą również do unieruchomienia powierzchni i spadku prędkości naturalnego ruchu pęcherza. Na podstawie badań kryterium ruchu sztywnych kuł w substancji plastycznolepkiej wyprowadzono zależność opisującą siłę oporu ruchu kuli w płynie nienewtonowskim opisanym prawem potęgowym o wykładniku n dążącym do zera. Opracowano metodę wyznaczania granicy płynięcia substancji plastycznolepkiej za pomocą wirówki.
The work is concerned with the motion of gas bubbles in the field of centrifugal forces in highly viscous liquids - Newtonian, non-Newtonian shear-thinning and viscoplastic ones. The main topic of the work is to define the condition for separation of bubbles from liquids of those kinds by means of a centrifuge and to investigate the influence of increased mass forces in the centrifuge on the surface phenomena which lead to the immobilisation of the moving bubble surface. Formulae were derived for the time needed for bubble separation in the centrifuge from Newtonian, shear-thinning power-law liquids as well as viscoplastic Herschel-Bulkley bodies. The formulae were confirmed experimentally for Newtonian and shear-thinning liquids. In the case of viscoplastic bodies, the proposed method proved satisfactory only at a sufficient distance from the place of the terminal standstill of the bubble, where it stays motionless in spite of the buoyancy force. The investigation of the bubble motion in a centrifuge showed that the surface immobilisation which leads to velocity decrease occurs with more difficulty in the centrifuge than in the gravitational field - as a result of the increased centrifugal acceleration the surface becomes mobile. The dimensionless bubble diameter was introduced which made it possible to generalise the criterion for surface immobilisation in the gravitational field onto the field of centrifugal forces. It was shown in theoretical way that gas bubbles can move downwards in an isothermal liquid if they were formerly subjected to the centrifugal force. That phenomenon was also experimentally confirmed. It was found that this effect occurs if during centrifugation the bubble surface was at least partially immobilised by the surface tension gradient. This leads to the conclusion that, according to the presented theory, this forced downward movement of a bubble is due to the surface phenomena which also lead to the surface immobilisation and as a result, to the decrease of the natural bubble movement. It was shown that gas bubbles moving in viscoplastic bodies assume strongly prolate shape. The criterion of motion, i.e. the condition which must be fulfilled for a bubble to move in a viscoplastic body, was formulated for spherical and prolate bubbles with free and immobilised surface. The critical value of this criterion was theoretically derived and experimentally proved. The motion/no motion conditions were also evaluated for the bubbles of irregular shape, typical for bubbles in viscoplastic bodies before the motion begins. On the ground of investigations of the criterion of motion of solid spheres in viscoplastic bodies, the formula was derived which describes the drag on a solid sphere moving in a power-law non-Newtonian liquid with the exponent n tending to zero. The method for evaluation of the yield stress of viscoplastic bodies by means of a centrifuge was elaborated.
Rocznik
Tom
Strony
3--154
Opis fizyczny
Bibliogr. 198 poz.
Twórcy
autor
- Politechnika Łódzka. Wydział Inżynierii Procesowej i Ochrony Środowiska
Bibliografia
- [1] Cerdan J., Dueyemes E.: Centrifugal separator for mixtures. Eur. Pat. Appl. EP 162,441
- [2] Hering W., Kramenz G., Kroll E.: Continuous degassing and deaeration of extremely viscous products. Ger(East) Pat. DD 222,500
- [3] Andro J., Franzolini M.: Centrifuge for separating a vapour-liquid mixture. Pat. Fr. Demande FR 2,553,296
- [4] Pelzer R., Lehman K.: Entgassungszentrifuge. Chemie Anlagen + Verfahren, 10, 39-42, (1984)
- [5] Yoshikawa T.: Removal of bubbles. Jap. Pat. 06,47,204
- [6] Creutz M., Mewes D.: A novel centrifugal gas-liquid separator for catching intermittent flows. Int. J. Mult. Flow 24, 1057-1078 (1998)
- [7] Clift R., Grace J.R., Weber M.E.: Bubbles, Drops and Particles, Academic Press, New York, NY, (1978)
- [8] Chhabra R.P.: Bubbles, Drops and Particles in Non-Newtonian Liquids. CRC Press, Boca Raton, FL, (1993)
- [9] Chhabra R.P., De Kee D.: Transport Processes in Bubbles, Drops and Particles. Hemisphere Publ. Corp., New York, 1999
- [10] Sadhal S.S., Ayyaswamy P.S., Chung J.N.: Transport Phenomena with Drops and Bubbles. Springer, New York (1997)
- [11] Clift R., Grace J.R., Weber M.E.: Bubbles, drops and particles. Academic Press, New York, NY (1978), p.22-27
- [12] Clift R., Grace J.R., Weber M.E.: Bubbles, drops and particles. Academic Press, New York, NY (1978), p. 31-32
- [13] Grace J.R., Wairegi T., Nguyen T.: Shapes and velocities of single drops and bubbles moving freely through immiscible liqiuds. Trans. Inst. Chem. Engrs., 54, 167-173 (1976)
- [14] Bond W.N., Newton D.A.: Bubbles, drops and particles. Philos. Magaz., 5, 794-800(1928)
- [15] Griffith R.: The effect of surfactants on the terminal velocity of drops and bubbles. Chem. Eng. Sei., 17, 1057-1070 (1962)
- [16] Davis R., Acrivos A.: The influence of surfactants on the creeping motion of bubbles. Chem. Eng. Sei., 21, 681-685 (1966)
- [17] Boussinesq M. J.: The application of the formula for surface viscosity to the surface of a slowly falling spherical droplet in the midst of a large unlimited amount of fluid which is at rest and possesses a smaller specific gravity. Ann. Chim. Phys. 29,357(1913)
- [18] Frumkin A., Levich V.: O vlijanii poverkhnostno-aktivnykh veshchestv na dvizhenie na granitse zhidkikh sred. Zhurn. Fiz. Khim., 21,1183-1203 (1947)
- [19] Redfield J.A., Houghton G.: Mass transfer and drag coefficient for single bubbles at Reynolds numbers 0.02 - 500. Chem. Eng. Sei., 20, 131-139 (1965)
- [20] Movick F., Woerman D.: Migration of air bubbles in silicone oil under the action of buoyancy. Ber. Bunsen-Ges. Phys. Chem., 97(8), 961-968 (1993)
- [21] Garner F.H., Skelland A.H.P.: Some facrors affecting droplet behaviour in liquid-liquid systems. Chem. Eng. Sei., 4(4), 149-158, (1955)
- [22] Harper J.F.: The motion of bubbles and drops through liquids. Adv. Appl. Mech., 12,59-129(1972)
- [23] Savic P.: Circulation and distorsion of liquid drops falling through a viscous medium. Nat. Res. Council Can. Civ. Mech. Eng., Rep. MT - 22 (1053)
- [24] Horton T.J., Fritsch T.R., Kintner R.C.:Experimental determination of circulation velocities inside drops. Can. J. Chem. Eng., 43, 143-146, (1965)
- [25] Beitel A., Heideger W.J.: Surfactant effect on mass transfer from drops subject to interfacial instability, Chem. Eng. Sei., 26, 711-717 (1971)
- [26] Levich V.: Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N-J. p. 474-513 (1962)
- [27] Schechter R.S., Farley R.W.: Interfacial tension gradients and droplet behaviour. Can. J. Chem. Eng., 41, 103-107 (1963)
- [28] Newman J.: Retardation of falling drops. Chem. Eng. Sei., 22, 83-85 (1967)
- [29] Levan M.D., Newman J.: The effect of surfactant on the terminal and interfacial velocities of a bubble or drop. AIChE J., 22, 695-701 (1976)
- [30] Levan M.D.: Motion of a droplet with a Newtonian interface. J. Coll. Int. Sei., 83(1), 11-17(1981)
- [31] Kawase Y., Ulbrecht J.: The effect of surfactant on terminal velocity of and mass transfer from a fluid sphere in a non-Newtonian fluid. Can. J. Chem. Eng., 60, 87-93 (1982)
- [32] He Z., Dagan Z., Maldarelli C: The influence of surfactant adsorption on the motion of a fluid sphere in a tube: uniform retardation controlled by sorption kinetics. J. Fluid Mech., 222, 1-32 (1991)
- [33] Stehe K.J., Maldarelli C: Remobilizing surfactant retarded fluid particle interfaces. J. Coll. Int. Sei., 163, 177-189 (1994)
- [34] Chen J., Stehe K.J.: Marangoni retardation of the terminal velocity of a settling droplet: the role of surfactant physico-chemistry. J. Coll. Int. Sei., 178, 144-155 (1996)
- [35] Chen J., Stehe K.J: Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech, 340, 35-59 (1997)
- [36] Rodrigue D., Blanchet F.: Surface remobilization of gas bubbles in polymer solutions containing surfactants. J. Coll. Int. Sei, 256, 249-255 (2002)
- [37] Milliken W.J., Leal L.G.: The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility. J. Coll. Int. Sei, 166, 275-285 (1994)
- [38] Wasserman M., Slattery J.: Creeping flow past a fluid globule when a trace of surfactant is present. AIChE J, 15, 533-539 (1969)
- [39] Rodrigue D., De Kee D.: Bubble velocity jump discontinuity in Polyacrylamide solutions: a photographic stydy. Rheol. Acta, 38, 177-182 (1999)
- [40] Rodrigue D., De Kee D., Chan Man Fong C.F .: An experimental study of the effect of surfactants on the free rise velicity of gas bubbles. J. Non-Newt. Fluid Mech, 66, 213-232 (1996)
- [41] Rodrigue D., De Kee D., Chan Man Fong CF.: Bubble velocities: further developments on the jump discontinuity. J. Non-Newt. Fluid Mech, 79, 45-55 (1998)
- [42] Rodrigue D., De Kee D., Chan Man Fong CF.: The slow motion of a single gas bubble in a non-Newtonian fluid containing surfactants. J. Non-Newt. Fluid Mech, 86,211-227(1999)
- [43] Huang W.S., Kintner R.C.: Effect of surfactant on mass transfer inside drops. AIChE J, 15,735-744(1969)
- [44] Harper J.F: On bubbles with immobile adsorbed films rising in liquids at low Reynolds numbers. J. Fluid Mech, 58, 539-545 (1973)
- [45] Harper J.F.: The leading edge of an oil slick, soap films or bubble stagnant cap in Stokes flow. J. Fluid Mech, 237,23-32 (1992)
- [46] Sadhal S.S., Johnson R.E.: Stokes flow past bubbles and drops partially coated with thin films. Part. 1 Stagnant cap of surfactant film - exact solution. J. Fluid Mech. 126,237-250(1983)
- [47] Oguz H.N., Sadhal S.S.: Effect of soluble and insoluble surfactant on the motion of drops. J. Fluid Mech, 194, 563-579 (1988)
- [48] He Z, Maldarelli C, Dagan Z.: The size of stagnant caps of bulk soluble surfactants on interfaces of translating fluid droplets. J. Coll. Int. Sei, 146, 442-450 (1991)
- [49] Cuenot B., Magnaudet J., Spennato B.: The effect of slightly soluble surfactants on the flow around a spherical bubble. J. Fluid Mech, 339, 25-53 (1997)
- [50] Zholkovskij E.K., Kovalchuk V.l., Dukhin S.S, Miller R.: Dynamics of rear stagnant cap formation at low Reynolds numbers. J. Coll. Int. Sei, 226, 51-59 (2000)
- [51] Zhang Y., McLaughlin J.B., Finch J.A: Bubble velocity profile and model of surfactant mass transfer to bubble surface. Chem. Eng. Sei. 56, 6605-6616 (2001)
- [52] LeVan M.D., Holbrook J.A.: Motiom of a droplet containing surfactant. J. Coll. Int. Sei. 131,242-251(1989)
- [53] Wang Y., Papageorgiou D.T., Maldarelli C: Increased mobility of a surfactant-retarded bubble at high bulk concentration. J. Fluid Mech., 390, 251-270 (1999)
- [54] Cristini V., Bławdziewicz J., Loewenberg M.: Near-contact motin of surfactant-covered spherical drops. J. Fluid Mech, 366, 259-287 (1998)
- [55] Milliken W.J., Leal L.G.: the influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility. J. Coll. Int. Sei. 166, 275-285 (1994)
- [56] Milliken W.J., Stone H.A., Leal L.G.: The effect of surfactant on the transient motion of Newtonian drops. Physics of fluids, A5, 69-79 (1993)
- [57] Stone H.A., Leal L.G.: The effect of surfactants on drop deformation and breakup. J. Fluid Mech, 220, 161-186 (1990)
- [58] Eggleton CD., Pawar Y.P., Stebe K. Insoluble surfactants on a drop in an extensional flow: a generalization of a stagnated surface limit to deforminginterfaces. J. Fluid Mech, 385, 79-99 (1999)
- [59] Astarita G., Apuzzo G.: Motion of gas bubbles in non-Newtonian liquids. AIChEJ, 11,815-820(1965)
- [60] Kawase Y., Ulbrecht J.: On the abrupt change of velocity of bubbles rising in non-Newtonian liquids. J. non-Newt. Fluid Mech, 8, 203-212 (1981)
- [61] Acharya A., Mashelkar R.A., Ulbrecht J.: Mechanics of bubble motion and deformation in non-Newtonian media. Chem. Eng. Sei, 32, 863-872 (1977)
- [62] Zana E, Leal L.G.: The dynamics and dissolution of gas bubbles in a viscoelastic fluid. Int. J. Multiphase Flow, 4, 237-262, (1978)
- [63] Carreau P.J., Devic M., Kapellas M.,: Dynamique des bulles en millieu viscoelastique. Rheol. Acta, 13, 477 (1974)
- [64] Rodrigue D., De Kee D.: Recent development in the bubble jump discontinuity. in Transport Processes in Bubbles, Drops and Particles (D.De Kee and R.P. Chhabra, Eds), chap. 4, p. 79-101. Taylor & Francis, New York, 2002
- [65] Rodrigue D., De Kee D.: Bubble velocity jump. Proceedings 13th International Congress on Rheology, Cambridge, 2000, vol 2 p. 241. British Society of Rheology, Glasgow 2000
- [66] Herrera-Velarde J.R., Zenit R., Chehata D., Mena B.: The flow of non-Newtonian fluids around bubbles and its connection to the jump discontinuity. J. Non-Newt. Fluid Mech, 111, 199-209 (2003)
- [67] Garner F.H, Hale A.R.: The effect of surface active agents in liquid extraction processes. Chem. Eng. Sei, 2, 157-163 (1953)
- [68] Kiijański T., Dziubiński M.: Efekty przyścienne podczas ruchu pęcherzy gazowych w cieczach o dużych lepkościach. Inż. Ap. Chem, nr 3,72-73, (2000)
- [69] Griffith R.M.: Mass transfer from drops and bubbles. Chem. Eng. Sei, 12, 198-213 (1960)
- [70] Ramirez J.A., Davis R.H.: Mass transfer to a surfactant-covered bubble or drop. AIChE J, 45, 1355-1358 (1999)
- [71] Lochiel A.C.: The influence of surfactant on mass transfer around spheres. Can. J. Chem. Eng, 43, 40-44 (1965)
- [72] Hirose T.: Perturbation solution for continuous-phase mass transfer in Stokes flow and inviscid flow around a fluid sphere. I.Solution for high Peclet numbers. Int. Chem. Eng., 18, 514-520 (1978)
- [73] Mekasut L., Molinier L., Angelino H.: Effect of surface-active agents on mass transfer inside drops. Chem. Eng. Sei., 34,217-224 (1979)
- [74] Pursell M.R., Tatsis M.A., Stuckkey D.C.: Effect of fermentation broths on mass transfer during liquid-liquid extraction. Biotechnol. and Bioeng., 85, 155-165 (2004)
- [75] Hadamard J.S.: Mouvement permanent lent d'une sphere liquide et visquese dans un liquide visqueux. Compt. Rend. Acad. Sei. Paris, 152, 1735-1738 (1911)
- [76] Rybczyński W.: Über die fortschreitende Bewegung einer flussigen Kugel in einem zähen Medium Bull. Acad. Sei. Cracovie, Ser. A, 40-46 (1911)
- [77] Faxen H.: Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Ark. mat. ästron. Fys. 17, 1-28 (1923)
- [78] Haberman W., Sayre R.: Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin report 1143 (1958)
- [79] Francis A.W.: Wall effect in falling ball method for viscosity. Physics, 4, 403-409 (1933)
- [80] Coutanceau M., Thizon P.: Wall effect on bubble behaviour in highly viscous liquids. J. Fluid Mech., 107, 339-373 (1981)
- [81] Zhang Y., Finch J.A.: A note on single bubble motion in surfactant solution. J. Fluid Mech., 429, 63-66 (2001)
- [82] Young N.O., Goldstein J.S., Block M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech., 6, 350-356 (1959)
- [83] Merrit R.M., Morton D.S., Subramanian R.S.: Flow structures in bubble migration under the combined action of bouoyancy and thermocapillarity. J. Coll. Int. Sei., 155,200-209(1993)
- [84] Nallani M., Subramanian R.S.: Migration of methanol drops in a vertical temperature gradient in a silicone oil. J. Coll. Int. Sei., 157, 24-31 (1993)
- [85] Chen J., Stebe K.J.: Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech., 340, 35-59 (1997)
- [86] Balasubramaniam R.: Thermocapillary and bouoyant bubble motion with variable viscosity. Int. J. Multiph. Flow, 24, 679-683 (1998)
- [87] Arlabosse P., Lock N., Medale M., Jaeger M.: Numerical investigations of thermocapillary flow around a bubble. Phy. Fluids, 11, 18-29 (1999)
- [88] - Zhang L., Subramanian R.S., Balasubramaniam: Motion of a drop in a vertical temperature gradient at small Marangoni number - the critical role of inertia. J. Fluid Mech., 448, 197-211(2001)
- [89] - Keh H.J., Chen P.Y., Chen L.S.: Thermocapillary motion of a fluid droplet. Int. J. Multiph. Flow, 28, 1149-1175 (2002)
- [90] Nas S., Tryggvason G.: thermocapillary interaction of two bubbles or drops. Int. J. Multiph. Flow, 29, 1117-1135 (2003)
- [91] Subramanian R.S.: The motion of bubbles and drops in reduced gravity, in: Transport processes in Bubbles, Drops and Particles, eds. R.P. Chhabra and D. De Kee, Hemisphere, New York, 1992
- [92] Fararoui R., Kintner R.C.: Flow and shape of drops in non-Newtonian fluids. Trans. Soc. Rheol., V. 369-380 (1961)
- [93] Mhatre M., Kintner R.: Fall of liquid drops through pseudoplastic liquids. Ind. Eng. Chem., 51, 865-873 (1959)
- [94] Dewsbury K., Karamanev D., Margaritis A.: Hydrodynamic characteristics of free rise of light solid particles and gas bubbles in non-Newtonian liquids. Chem. Eng. Sei, 54, 4825-4830, (1999)
- [95] Leal L., Skoog J., Acrivos A.: On the motion of gas bubbles in a viscoelastic liquid. Can. J. Chem. Eng., 49, 569-575 (1971)
- [96] De Kee D., Carreau P.J., Mordarski J.: Bubble velocity and coalescence in viscoelastic fluids. Chem. Eng. Sei., 41, 2273-2283 (1986)
- [97] Liu Y.J., Liao T.Y., Joseph D.D.: A two-dimensional cusp at the trailing edge of an air bubble rising in a viscoelastic liquid. J. Fluid Mech., 304,321-342 (1995)
- [98] Belmonte D.: Self-oscillations of a cusped bubble rising through a micellar solution. Rheol. Acta, 39, 554-559 (2000)
- [99] Bhavaraju S.M., Mashelkar R.A., Blanch H.W.: Bubble motion and mass transfer in non-Newtonian fluids. AIChE J., 24, 1063-1076 (1978)
- [100] Terasaka K, Tsuge H.: Bubble formation at a nozzle submerged in viscous liquids having yield stress. Chem. Eng. Sei. 56, 3237-3245 (2001)
- [101] Gheissary G., van den Brule B.H.A: Unexpected phenomena observed in particle settling in non-Newtonian media. J. Non-Newt. Fluid Mech., 67, 1-18 (1996)
- [102] Cho Y.I., Hartnett J.P.: Drag coefficients of a slowly moving sphere in non-Newtonian fluids. J. Non-Newt. Fluid Mech., 12, 243-247 (1983)
- [103] Acharya A., Mashelkar R.A., Ulbrecht J.: Flow of inelastic and viscoelastic fluids past a sphere. Rheol. Acta, 15, 454-461 (1976)
- [104] Kawase Y., Ulbrecht J.: Newtonian fluid sphere with rigid or mobile interface in a shear thinning liquid: drag and mass transfer. Chem. Eng. Commun., 8, 213-218 (1981)
- [105] Chhabra R.P., Tiu C, Uhlherr P.H.T.: Shearthinning effects in creeping flow about a sphere, in: Rheology, vol.2, Plenum, New York, 9, (1980)
- [106] Tomita Y: On the fundamental formula of non-Newtonian flow. Bull. Jap. Soc. Mech. Eng., 2, 469-479 (1959)
- [107] Wallick G.C., Savins J.G., Arterburn D.R.: Tomita solution for the motion of a sphere in a power-law fluid. Phys. Fluids, 5,367-375 (1962)
- [108] Wasserman M.L., Slattery J.C.: Upper and lower bounds on the drag coefficient of a sphere in a power model fluid. AIChE J., 10, 383-388 (1964)
- [109] Kawase Y., Moo-Young M.: Approximate solutions for power-law fluid flow past a particle at low Reynolds number. J. non-Newt. Fluid Mech., 21, 167-175 (1986)
- [110] Gu C, Tanner R.: The drag on a sphere in a power-law fluid. J. Non-Newt. Fluid Mech., 17, 1-12(1985)
- [111] Misirlis K.A., Assimacopoulos D., Mitsoulis E., Chhabra R.P.: Wall effects for motion of spheres in power-law fluids. J. Non-Newt. Fluid Mech., 96, 459-471 (2001)
- [112] Slattery J., Bird R.: Non-Newtonian flow past a sphere. Chem. Eng. Sei., 16, 231-241 (1961)
- [113] Hopke S., Slattery J.: Upper and lower bounds on the drag coefficient of a sphere in an Ellis fluid. AIChE J., 16, 224-229 (1970)
- [114] Kawase Y., Moo-Young M.: Approximate solution for drag coefficient of bubbles moving in shear-thinning elastic fluid. Rheol. Acta, 24, 202-206 (1985)
- [115] Chhabra R.P., Tiu C, Uhlherr P.H.T.: Creeping motion of spheres through Ellis model fluids. Rheol. Acta, 20, 346-351 (1981)
- [116] Chhabra R.P., Uhlherr P.H.T.: Creeping motin of spheres through shear-thinning elastic fluid described by Carreau equation. Rheol. Acta, 19, 187-195 (1980)
- [117] Bush M., Phan - Tien M.: Drag force on a sphere in creeping motion through a Carreau fluid. J. Non-Newt. Fluid Mech., 16, 303-313 (1984)
- [118] Chhabra R.P., Uhlherr P.H.T., Boger D.: The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. J. Non-Newt. Flud Mech., 6, 187-199(1980)
- [119] Harlen O.G.: The negative wake behind a sphere sedimenting through a viscoelastic fluid. J. Non-Newt. Fluid Mech., 108, 411-430 (2002)
- [120] Solomon M.J., Muller S.J.: Flow past a sphere in polystyrene-based Boger fluids: the effect on the drag coefficient of finite extensibility, solvent quality and polymer molecular weight. J. Non-Newt. Fluid Mech., 62, 81-94 (1996)
- [121] Navez V., Walters K.: A note on settling in shear-thinning polymer solutions. J. Non-Newt. Fluid Mech., 67, 325-334 (1996)
- [122] Funfschilling A., Li H.Z.: Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualisation. Chem. Eng. Sei., 56, 1137-1141 (2001)
- [123] Joseph D.D., Feng J.: The negative wake in a second-order fluid. J. Non-Newt. Fluid Mech., 57, 313-230 (1995)
- [124] Harlen O.G.: The negative wake behind a sphere sedimenting through a viscoelastic fluid. J. Non-Newt. Fluid Mech., 108, 411-430 (2002)
- [125] Sigli D., Coutanceau M.: Effect of finite boundaries on the slow laminar flow of a viscoelastic fluid around a spherical obstacle. J. Non-Newt. Fluid Mech., 2, 1-21 (1977)
- [126] Bisgaard C: Velocity fields around spheres and bubbles investigated by laser-doppler anemometry. J. Non-Newt. Fluid Mech., 12, 283-302 (1983)
- [127] Hassager O.: Negative wake behind bubbles in non-Newtonian liquids. Nature 279, 402-403 (1979)
- [128] Bisgaard C, Hassager O.: An experimental investigation of velocity fields around spheres and bubbles moving in non-Newtonian fluids. Rheol. acta, 21, 537-539 (1982)
- [129] Arigo M.T., Mc Kinley G.H.: An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid. Rheol. Acta, 37, 307-327(1998)
- [130] Bush M.B.: The stagnation flow behind a sphere. J. Non-Newt. Fluid Mech., 49, 103-122(1993)
- [131] Satrape J.V., Crochet M.J.: Numerical simulation of the motion of a sphere in a Boger fluid. J. Non-Newt. Fluid Mech., 55, 91-111 (1994)
- [132] Maalouf A., Sigli D.: Effect of body shape and viscoelasticity on the slow flow around an obstacle. Rheol. Acta, 23,497-507 (1984)
- [133] Kawase Y., Hirose T.: Motion of drops in non-Newtonian fluid systems at low Reynolds number. J. Chem. Eng. Jap., 10,68-70 (1977)
- [134] Hirose T., Moo-Young M.: Bubble drag and mass transfer in non-Newtonian fluids: creeping flow with power-law fluids. Can. J. Chem. Eng., 47, 265-267 (1969)
- [135] Acharya A., Mashelkar R., Ulbrecht J.: Motion of liquid drops in Theologically complex fluids. Can. J. Chem. Eng., 56, 19-25 (1978)
- [136] Nakano Y., Tien C: Creeping flow of a power-law fluid over Newtonian fluid sphere. AIChE J., 14, 145-150 (1968)
- [137] - Mohan V.: Creeping flow of a power-law fluid over a Newtonian fluid sphere. AIChE J., 20, 180-182(1974)
- [138] De Kee D., Carreau P.J.: Friction factors and bubble dynamics in polymer solutions. Can. J. Chem. Eng., 71, 183-188 (1993)
- [139] Margaritis A., te Bokkel D.W., Karamanev D.G.: Bubble rise velocities and drag coefficients in non-Newtonian polysaccaride solutions. Biotechnol. Bioeng. 64, 257-266(1999)
- [140] Mohan V., Venkatesvarlu D.: Lower bound on ihre drag offered to a Newtonian fluid sphere placed in a flowing Ellis fluid. J. Chem. Eng. Jap., 7, 243-247 (1974)
- [141] Jarzębski A., Malinowski M.: Drag and mass transfer in a creeping flow of a Carreau fluid over drops and bubbles. Can. J. Chem. Eng., 65, 680-684 (1987)
- [142] Yamanaka A., Mitsuishi N.: Drag coefficient of a moving bubble and droplet in viscoelastic fluids. J. Chem. Eng. Jap., 10, 370-374 (1977)
- [143] Barnes H.A., Walters K.: The yield stress myth? Rheol. Acta 24, 323-326 (1985)
- [144] Astarita G.: The engineering reality of the yield stress. J. Rheol., 34, 275-277 (1990)
- [145] Barnes H.A.: The yield stress - a review or navxa psi - everything flows. J. Non-Newt. Fluid Mech. 81, 133-178 (1999)
- [146] Jay P., Magnin A., Piau J.M.: Numerical symulation of viscoplastic fluid flows through an axisymmetric contraction. Trans. ASME, 124, 700-705 (2002)
- [147] Gans R.F.: On the flow of a yield strength fluid through a contraction. J. Non-Newt. Fluid Mech., 81, 183 -195 (1999)
- [148] Papanastasiou T.C.: Flow of materials with yield. J. Rheol. 31, 385-404 (1989) [149] Chhabra R.P.: Bubbles, drops and particles in non-Newtonian liquids, CRC Press, Boca Raton, FL, (1993), p. 96
- [150] Boardman G., Whitmore R.L.: The static measurements of yield stress. Lab. Prac, 10,782-786(1961)
- [151] Ansley R.W., Smith T.N.: Motion of spherical particles in a Bingham plastic. AIChE J., 13, 1193-1196(1967)
- [152] Brookes G.F., Whitmore R.I.: The static drag on bodies in Bingham plastics. Rheol. Acta, 7, 188-192 (1968)
- [153] Wan Z.: Bed material movement in hyperconcentrated flow. J. Hyd. Eng., Ill, 987-991 (1985)
- [154] Uhlherr P.H.T.: A novel method for mesuring yield stress in static fluids. Proc. 9th Natl. Conf. Rheol. Adelaide, 231, (1986)
- [155] Atapattu D.D., Chhabra R.P., Tiu C, Uhlherr P.H.T: The effect of cylindrical boundaries for spheres falling in fluids having a yield stress. Proc. 9th Australasian Fluid Mech. Conf. Auckland, 584-587, (1986)
- [156] Andress U.T.: Ravnovyesye i dvizhenye sfery v vyazkoplasticheskoy zhidkosti. Doki. Akad. Nauk SSSR, 133, 777-780 (1960)
- [157] Traynis V.V.: Parameters and flow regimes for hydraulic transport of coal by pipelines. Terraspace, Rockville, MD (1977)
- [158] Chhabra R.P., Uhlherr P.H.T.: Static equilibrium and motion of spheres in viscoplastic liquids, in Encyclopedia of Fluid Mechanics, Cheremisinoff, n.p., Ed., Gulf, Houston, 1988, chap. 21
- [159] Brookes CF., Whitmore R.L.: Drag forces in Bingham plastics. Rheol. Acta, 8, 472-480 (1969)
- [160] Mirzadzhanzade A.H.: Voprosy gidrodinamiki vjazkoplasticheskoy i vjazkoy zhidkosti, Izd. Nauka, Baku 1959
- [161] Atapattu D.D., Chhabra R.P., Uhlherr P.H.T.: Wall effects for spheres falling at small Reynolds number in a viscoplastic medium. J. Non-Newt. Fluid Mech. 38, 31-42(1990)
- [162] He Y.B., Laskowski J.S., Klein B.: Particle movement in non-Newtonian slurries: the effect of yield stress on dense medium separation. Chem. Eng. Sei., 56, 2991-2998 (2001)
- [163] Blackery J., Mitsoulis E.: Creeping flow of a sphere in tubes filled with a Bingham plastic material. J. Non-Newt. Fluid Mech., 70, 59-77 (1997)
- [164] Beris A.N., Tsamopoulos J., Armstrong R.C., Brown R.A.: Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech., 158, 219-244 (1985)
- [165] Adachi K., Yoshioka N.: On creeping flow of a viscoplastic fluid past a circular cylinder. Chem. Eng. Sei., 28, 215-226 (1973)
- [166] Boardman G., Whitmore R.L.: Yield stress exerted on a body immersed in a Bingham fluid. Nature, 187, 50-51 (1960)
- [167] Mitsoulis E.: On creeping drag flow of a viscoplastic fluid past a circular cylinder. Chem. Eng. Sei. 59, 789-800 (2004)
- [168] Beaulne M., Mitsoulis E.: Creeping flow of a sphere in tubes filled with Herschel-Bulkley fluids. J. Non-Newt. Fluid Mech. 72, 55-71 (1997)
- [169] Liu B.T., Muller S.J., Denn M.M.: Interaction of two rigid spheres translating colinearly in creeping flow in a Bingham material. J. Non-Newt. Fluid Mech., 113, 49-67 (2003)
- [170] Liu B.T., Muller S. J., Denn M.M.: Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J. Non-Newt. Fluid Mech., 102, 179-191 (2002)
- [171] Atapattu D.D., w: Chhabra R.P.: Bubbles, drops and particles in non-Newtonian liquids, CRC Press, Boca Raton, FL, (1993), p. 10-102
- [172] Atapattu D.D., Chhabra R.P., Uhlherr P.H.T.: Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag. J. Non-Newt. Fluid Mech., 59, 245-265 (1995)
- [173] Pazwash H., Robertson J.M.: Forces on bodies in Bingham fluids. J. Hydraul. Res., 13,35-40(1975)
- [174] Valentik L., Whitmore R.L.: The terminal velocity of spheres in Bingham plastics. Brit. J. Appl. Phys., 16, 1197-1203 (1965)
- [175] Dedegil M.Y.: Drag coefficient and settling velocity of particles in non-Newtonian suspensions. J. Fluids Eng., Trans. ASME, 109, 319-323 (1987)
- [176] Kawase Y., Ulbrecht J.: The influence of walls on the motion of a sphere in non-Newtonian fluids. Rheol. Acta, 22, 27-33 (1983)
- [177] Mena B., Manero O.: The influence of rheological properties on the slow flow past spheres. J. Non-Newt. Fluid Mech., 26, 247-275 (1987)
- [178] Sugeng F., Tanner R.I.: The drag on spheres in viscoelastic fluids with significant wall effects. J. Non-Newt. Fluid Mech., 20, 281-292 (1986)
- [179] Chhabra R.P., Tiu C, Uhlherr P.H.T.: Wall effect for sphere motion in inelastic non-Newtonian fluids, Proc. 6th Australasian Hydraulics and Fluid Mech. Conf, Adelaide, 435-438, (1977)
- [180] Zheng R., Phan-Tien N., Tanner R.I.: The flow past a sphere in a cylindrical tube: effect of inertia, shear-thinning and elasticity. Rheol. Acta 30, 499-510 (1991)
- [181] Turian R.M.: An experimental investigation of the flow of aqueous non-Newtonian high polymer solutions past a sphere. AIChE J., 13, 999-1006 (1967)
- [182] Chhabra R.P., Tiu C, Uhlherr P.H.T.: A study of wall effect on the motion of a sphere in viscoelastic fluids. Can. J. Chem. Eng., 59, 771-775 (1981)
- [183] Chhabra R.P., Uhlherr P.H.T.: The influence of fluid elasticity on wall effects for creeping sphere motion in cylindrical tubes. Can. J. Chem. Eng., 66, 154-157 (1988)
- [184] Carew E.O.A., Townsend P.: Non-Newtonian flow past a sphere in a long cylindrical tube. Rheol. Acta, 27, 125-129 (1988)
- [185] Arigo M.T., Rajagopalan D., Shapley N., Mc Kinley G.H.: The sedimentation of a sphere through an elastic fluid. J. Non-Newt. Fluid Mech., 60, 225-257 (1995)
- [186] Satrape J.V., Crochet M.J.: Numerical simulation of the motion of a sphere in a Boger fluid. J. Non-Newtonian Fluid Mech. 55, 91-111 (1994)
- [187] Lunsman W.J., Genieser L., Armstrong R.C., Brown R.A.: Finite element analysis of steady viscoelastic flow around a sphere in a tube. J. Non-Newtonian Fluid Mech. 48, 63-99 (1993)
- [188] Bugg J.D., Mack K., Rezkallah K.S.: A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes. Int. J. Multiphase Flow 24,271-281 (1998)
- [189] Bugg J.D., Saad G.A.: The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results. Int. J. Multiphase Flow 28, 791-803 (2002)
- [190] Clift R., Grace J.R., Weber J.M.: Bubbles, drops and particles", Academic Press, New York, NY (1978) p. 75
- [191] Tomiyama A., Celata G.P., Hosokawa S., Yoshida S.: Terminal velocity of single bubbles in surface tension force dominant regime. Int. J. Multiph. Flow 28, 1497-1519(2002)
- [192] Tomiyama A., Yoshida S., Hosokawa S.: Surface tension force dominant regime of single bubbles rising through stagnant liquids. 4-th UK-Japan Seminar on Multiphase Flow. pp. 1-6 (2001)
- [193] Tomiyama A.: Drag, lift and virtual mass force acting on a singlebubble. CD-ROM: 3rd Int. Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, (2002)
- [194] Budzyński P., dane niepublikowane, proj. bad. KBN 4 T09C 030 22 (2004)
- [195] Chhabra R.P., Bangun J.: Wall effects on terminal velocity of small drops in Newtonian and non-Newtonial fluids. Can. J. Chem. Eng., 75, 817-822 (1997)
- [196] Tirtaadmadja V., Uhlherr P.H.T., Sridhar T.: Creeping motion of spheres in fluid MI. J. Non-Newtonian Fluid Mech. 35, 327-339 (1990)
- [197] Chhabra R.P.: Bubbles, Drops and Particles in non-Newtonian Fluids, CRC Press, Boca Raton, FL, (1993) p. 146 [198] - Shina A., Tsujino T.: The behaviour of bubbles in polymer solutions. Chem. Eng. Sei. 31,863-870(1976)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0016-0028