PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowania sztucznych sieci neuronowych w mechanice i inżynierii

Autorzy
Identyfikatory
Warianty tytułu
EN
Applications of artificial neural networks in mechanics and in engineering
Języki publikacji
PL
Abstrakty
PL
W prezentowanej pracy można wyróżnić dwa podstawowe obszary tematyczne. Pierwszy z nich to użycie sieci neuronowych warstwowych do modelowania konstytutywnego oraz do identyfikacji parametrycznej, drugi to konstruowanie programów eksperckich przy użyciu sieci typu IAC i baz danych. Pierwsze trzy rozdziały pracy mają charakter rozdziałów wstępnych. Zdefiniowano w nich terminologię oraz opisano narzędzia numeryczne, użyte w dalszej części rozprawy. Kolejne pięć rozdziałów zawiera przykłady zastosowań sztucznych sieci neuronowych w mechanice i w inżynierii. W rozdziale pierwszym przedstawiono krótko genezę i zarys rozwoju historycznego sztucznych sieci neuronowych, opisano elementy budowy operatora neuropodobnego oraz proces transmisji sygnału wejściowego przez sztuczną sieć neuronową. Jak wiadomo, sztuczne sieci neuronowe mogą być analizowane przy użyciu wielu różnych formalizmów matematycznych. W dalszej części rozdziału pierwszego przedstawiono sieć neuronową warstwową jako interpretację graficzną i algorytmiczną wzorów aproksymacyjnych dla funkcji, funkcjonału i operatora. W rozdziale drugim przedstawiono praktyczne metody doboru parametrów sieci neuronowej. Rozpatrzono zagadnienie uczenia nadzorowanego. Przedstawiono metodę największego spadku oraz wynikający z niej algorytm wstecznej propagacji błędu dla doboru wag synaptycznych i biasów w SSN. W dalszej części rozdziału przedstawiono sposób obliczania pochodnej sygnału wyjściowego sieci względem składowych sygnału wejściowego. Przedstawiono zarys analizy jakości wytrenowania SSN. W końcowej części rozdziału autor formułuje "algorytm wielokrotnych startów" służący do oceny prawidłowości działania sieci bez użycia zbioru testującego. Rozdział trzeci poświęcony jest w całości sieciom rekurencyjnym. Przedstawione są sieci typu Hopfielda-Tanka i sieci typu IAC (wzajemna interakcja i konkurencja). W rozdziale czwartym przedstawiono przykład zastosowania sztucznych sieci neuronowych do identyfikacji parametrycznej teoretycznego modelu zachowania mechanicznego kompozytu włóknistego, pod działaniem obciążenia cyklicznego. Sieć neuronową wytrenowano tak, że fragmenty wykresu uzyskanego przy zastosowaniu modelu matematycznego - zostały stowarzyszone z wartościami parametrów, dla których zostały wykreślone. Dzięki temu, prezentacja wykresu eksperymentalnego na wejściu sieci pozwala otrzymać wartości parametrów, dla których, w ramach przyjętego modelu, można otrzymać realistyczny opis zjawiska. W rozdziale piątym przedstawiono metodę bezpośrednią opisu związku konstytutywnego przy pomocy sieci neuronowej. Skupiono uwagę na reprezentacji przyrostowej związku konstytutywnego. Metodę aproksymacji opracowano tak, aby możliwe było przybliżanie funkcji wielowartościowych przy jej pomocy. Uznano, że miarodajnym kryterium poprawności reprezentacji jest zdolność sieci do samodzielnego symulowania zachowania mechanicznego ośrodka dla zadanego programu obciążenia. Rozdział szósty poświęcony jest w całości rozwinięciu zasadniczych tez zarysowanych w rozdziale piątym. Przedstawiono sposób wpisania reprezentacji neuronowej związku konstytutywnego do programu metody elementów skończonych. Zamieszczono dwa przykłady. Pierwszy przedstawia aproksymację danych doświadczalnych opisujących histerezę sorpcji w materiale porowatym przy pomocy SSN, a następnie zastosowanie tego opisu w modelu numerycznym suszenia i zwilżania przegrody budowlanej, rozwiązanym programem MES. Drugi przykład to rozszerzenie modelu cewki nadprzewodzącej, przedstawionego w rozdziale poprzednim, na zadanie dwuwymiarowe. W rozdziale siódmym skupiono uwagę na zastosowaniach SSN do modelowania efektywnych własności kompozytów. Efektywny związek konstytutywny aproksymowany przez sztuczną sieć neuronową jest tu zdefiniowany numerycznie na podstawie skończonej liczby przykładów, bez konieczności przyjmowania założeń "a priori" dotyczących jego postaci. Przedstawiono różne metody gromadzenia danych konstytutywnych koniecznych do treningu sieci: metoda bezpośrednia, metoda samouczącego się programu MES oraz koncepcja zastosowania sieci Hopfielda-Tanka do generacji uśrednionych stanów naprężeń. Przedstawiona w tym rozdziale metoda identyfikacji bezpośredniej parametrów efektywnych związków konstytutywnych pozwala na aproksymację zależności funkcyjnej charakterystyk efektywnych od opisu mikrostruktury. Zależność taka jest trudna do uzyskania w ramach klasycznej teorii homogenizacji. Rozdział ósmy pracy poświęcony jest budowie programów eksperckich opartych nie na regułach wnioskowania, ale na opisach sytuacyjnych zgromadzonych jako przykłady w bazie danych. Do tego celu służy sieć IAC, która użyta jest jako "inteligentna powłoka" nad bazą danych. Przedstawiono dwa przykłady takich zastosowań. Porównano sprawność "inteligentnej bazy danych" z rozwiązaniem tych samych zadań przy użyciu sieci warstwowej.
EN
Applications of artificial neural networks in mechanics and in engineering Two kinds of artificial neural networks are mainly addressed in this book. These are: ANNs with hidden layers trained using error back propagation method and an Interactive Activation and Competition ANN. Three initial chapters are introductive while in the five other chapters different applications of the ANN in Mechanics and in Engineering are presented and illustrated with examples. In the first chapter a short historical review of the development of ANN is presented. Author introduces then a formal definition of a neural-like operator and describes its structural elements. The formalism of transmission of an input signal through the neural network is also presented. The aim of this chapter is an interpretation of a classical neural network with hidden layers as a universal approximator of a function, of a functional or of an operator. In the second chapter author reviews some fundamental algorithms that allow finding proper parameters of the ANN with hidden layers. Problem of correct design of the ANN is discussed and some methods of construction of a rational ANN are suggested. Third chapter is devoted to a theory and analysis of recurrent neural networks. The attention is focused on Hopfield-Tank ANN, IAC ANN and on cellular neural net. The fourth chapter presents an example of the use of the ANN with hidden layers for parameter identification of a theoretical model of mechanical behaviour of a fibrous composite under transversal cyclic loading. A set of parameters of a generalised elasto-plastic model is identified to ensure the best accordance between two families of graphs of stress: that predicted by the theory and the experimental one. The adaptation of the theoretical model to obtain a better description of the experimental data is described and the application of the ANN technique for parameter identification is presented. An interpretation of the nature of mechanical processes that govern the considered experiment is proposed and confirmed by the analysis of identified parameters. In the fifth chapter the artificial neural network with two hidden layers is trained to approximate directly a mechanical constitutive relationships for a superconducting cable under transverse cyclic loading. The training is performed using the same, as in the previous chapter, set of experimental data. The behaviour of the cable is strongly non-linear. Irreversible phenomena result with complicated loops of hysteresis. The performance of the ANN, which is applied as a tool for storage interpolation and interpretation of experimental data, is investigated, both from numerical, and from physical viewpoints. The representation of the complex experimental data via ANN is very convenient as a definition of constitutive material relationships for finite element method. The incremental representation of constitutive law is chosen as a suitable form that can be approximated with ANN and used in FE code. Exemplification of the use of the ANN as a constitutive procedure in a FE code is presented in the sixth chapter. First example is the use of ANN inside the hydro-thermo-mechanical FE program HAMTRA to handle a constitutive dependence of sorption on relative humidity in the pores of the porous medium. The second example consists of a 2D continuation of the analysis of the superconducting strand. In the seventh chapter the ANN is used for approximation of the effective constitutive law for composite materials. First, neural network is used as an approximator of the functional dependence of values of components of the effective constitutive matrix on mechanical properties of the components of the cell of periodicity. This dependence is known from examples furnished by direct application of the homogenisation procedure for the exemplary cells. Next, the attention is focused on application of a so-called "self-learning" finite element procedure to modelling an effective behaviour of composites. Third method bases on the simultaneous use of Hopfield-Tank neural network to generate statically admissible stress fields and the ANN with hidden layers to associate them with a corresponding, known state of deformation. It should be highlighted that the above methods can be used in numerical modelling of nonlinear material behaviour with hysteresis. Concept of an application of a neural network of the Interactive Activation and Competition (IAC) type as a basic structure of an expert program that operates not on the rules but on the data collected in a data base - is presented in the eights chapter. Two examples are analysed: an intelligent database containing technical description of building objects and the second - IAC network as a tool for energy auditor. These expert programs joint two functions: collect technical data describing some building objects and allows us to obtain some "opinions" concerning their technical and thermal state. The only source of knowledge, the expert program needs, is a sufficiently rich set of examples. The similar functionality can be obtained with a use of ANN with hidden layer. It is concluded, however, that the IAC network is more advantageous in the role of an "intelligent shell" over a database.
Rocznik
Tom
Strony
3--258
Opis fizyczny
Bibliogr. 348 poz.
Twórcy
autor
  • Katedra Geotechniki i Budowli Inżynierskich, Wydział Budownictwa, Architektury i Inżynierii Środowiska, Politechnika Łódzka, geotech@mail.p.lodz.pl
Bibliografia
  • [1] Abdi, Les Réseaux de Neurones, Presses Universitaires de Grenoble, 1994.
  • [2] H. Adeli, A. Karim, Neural Network Model for Optimization of Cold-Formed Steel Beams, Journal of Structural Engineering, 1535-1543, November 1997.
  • [3] H. Adeli, H.S. Park, Counterpropagation Neural Networks in Structural Engineering, Journal of Structural Engineering, 7, 880-888, 1997.
  • [4] H. Adeli, H.S. Park, Distributed Neural Dynamics Algorithms for Optimisation of Large Steel Structures, Journal of Structural Engineering, 7, 880-888, 1997.
  • [5] F. Akhavan, S.E Watkins, Prediction of Impact Contact Forces of Composite Plates Using fiber Optic sensors and Neural Networks, Mechanics of Composite Materials and structures, 7, 195-205 (2000).
  • [6] G. Allaire, Homogenization and two-scale convergence, SIAMJ. Math. Anal., 23 (1992) 1482-1518.
  • [7] R. Andrews, S. Geva, Rule extraction from local claster neural nets, Neurocomputing 47 (2002) 1-20.
  • [8] V.I. Arnold, O funkcji treh peremennych, Doklady Akademii Nauk CCCR, Tom 114, Nomer 4, 679-681, 1957.
  • [9] J.-P. Aubin, Neural Networks and qualitative physics, Cambridge University Press, 1996.
  • [10] J.-L. Auriault, J. Lewandowska, Effective diffusion coefficient: from homogenisa-tion to experiment, Transport in Porous Media, 27, 205-223 (1997).
  • [11] J.-L. Auriault, J. Lewandowska, Modelling of pollutant migration in porous media with interfacial transfer: local equilibrium/non-equilibrium, Mech. Cohesive-Frictional Materials, 2, 205-221 (1997).
  • [12] A.V. Avdelas, P.D. Panagiotopoulos, S. Kortesis Neural networks for computing in elastoplastic analysis of structures, Meccanica, 60,1-15,(1995).
  • [13] N. Bakhvalov, G. Panasenko, Homogenisation: Average Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Kluwer Academic Publ. 1989
  • [14] D.S. Banarse, I. France, A.W.G. Duller, Analysis and application of self-organising imege recognition neural network. Advances in Engineering Software 31,937-944,2000.
  • [15] A.A. Bandeira, P. Wriggers, P.M. Pimenta, Homogenization Method Leading to Interface Laws of Contact Mechanics - A Finite Element Approach for Large 3D Deformation Using ALM, IJMN, 2001.
  • [16] W. Barański, C. Boutin (eds.), Homogenization Methods in Civil Engineering. Workshop TUL-ENTPE, Szklarska Poręba, January 15-18, 2001 Wyd. Politechniki Łódzkiej (2002).
  • [17] V. Basios, A.Yu. Bonushkina, V.V. Ivanov, A Method for Approximating One-Dimensional Functions. Computers Math. Applic. Vol. 34 No. 7/8, 687-693, 1997.
  • [18] R.M. Benning, T.M. Becker, A. Delgado, Initial studies of predicting flow field with an ANN hybrid, Advances in Engineering Software, 32, 895-901, 2001.
  • [19] A. Bensoussan, J.-L. Lions, G. Papanicolau (1976), Asymptotic Analysis for Periodic Structures, Amsterdam, North-Holland.
  • [20] L. Berke, P. Hajela, Applicationc of artificial neural nets in structural mechanics, Structural Optimization, 4, 90-98, 1992.
  • [21] H-G. Beyer, H-P. Schwefel, Evolution strategies, Neural Computing, 1, 3-52, 2002.
  • [22] J. Bień, S.Rewiński, SMOK - kompleksowy system zarządzania mostami kolejowymi, Inżynieria i Budownictwo 3, 180-185, 1996.
  • [23] A. Blum, Neural Networks in C++, J.Wiley & Sons, 1992.
  • [24] J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press (1997).
  • [25] A. Borboni, R. Bussola, R. Faglia, M. Tiboni, G. Resconi, Modello Analitico per lo Studio délia Dynamica di un Sistema Intermittore: un Approccio Mediante Neurone Morfogenetico, AIMETA2000 XIII Convegno Italiano di Meccannica Computazionale, Brescia, 13-15 Novembre 2000.
  • [26] E. Boros, P.L. Hammer, J.N. Hooker, Predictmg Cause-Effect Relationships from Incomplete Discrete Observations, RUTCOR Research Report 9-93, Rutgers University, New Brunswick (1993).
  • [27] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, 1998.
  • [28] C. Boutin, Heat Conduction with Microstructural Effects, in Homogenisation, Theory of Migration and Granular Bodies, E. Dembicki, J.-L.Auriault, Z. Sikora (eds.), Gdańsk, 1995, pp 53-63.
  • [29] A. Bouzerdoum T.R. Pattison, (1993), Neural Network for Quadratic Optimisation with Bound Constraint, IEEE Transaction on Neural Networks, 4, 293-304.
  • [30] M. Burger and A. Neubauer, Error Bounds for Approximation with Neural Networks, Journal of Approximation Theory, Vol. 112 Issue 2, (2001) 235-250.
  • [31] M. Burger and H.W. Engl, Training neural networks with noisy data as an ill-posed problem, Adv. Comp. Math. (2000).
  • [32] M. Burger web page http://www.sfb013.uni-linz.ac.at/~martin/pubs.html (more than 20 papers).
  • [33] D. Caillerie, M. Lefik, FE. Application of Homogenisation Theory to The Analysis of a Non-Linear Material Behaviour of A Quasi-Periodic Composite. Abstracts of 14th Polish Conference on Computer Methods in Mechanics. PCCMM'99 Rzeszów, Poland 61-62 (1999).
  • [34] S. Camarata, Reti neuronali, dal perceptron alle reti chaotiche e neuro-fuzzy, Milano, ETAS libri, 1997.
  • [35] J. Cao, Global asymptotic stability of delayed bi-directional associative memory neural networks, AppliedMathematicsand Computations (2003).
  • [36] J.L. Castro, C.J. Mantas, J.M. Benitez, Neural networks with a continuous squashing function in the output are universal approximators, Neural Networks, 13,(2000), 561-563.
  • [37] H. Cetinel, H.A. Ozygit, L. Ozsoloyeller, Artificial neural networks modeling of mechanical propoerty and microstructure evolution in the Tempcore process, Computers and Structures (in print, 2003).
  • [38] W.T. Chan, V. Chow and L.F. Liu, Neural Network: an Alternative to Pile Driving Formulas, Computers and Geotechnics, 17, 135-156, 1995.
  • [39] T. Chen, H. Chen, Universal Approximation to Non-linear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems, IEEE Trans, on Neural Networks, Vol. 6, No 4, 911 -917, 1995.
  • [40] A. Chen, J. Cao Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients, Applied Mathematics and computations, 134, 124-140, 2003.
  • [41] H. Chen, S. Grant-Muller, Use of sequential learning for short term traffic flow forecasting. Transportation research. Part C 9, 319-336, 2001.
  • [42] A. Chen, L. Huang, J. Cao, Existence and stability of almost periodic solutions for BAM networks with delays, Applied Mathematics and computations, 137, 177-193,2003.
  • [43] Y. Cheng, W.L. Huang, C.Y. Zhou, Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring, International Journal of Pressure vessel and piping 76, 113-116, 1999.
  • [44] S.P. Chiew, A. Gupta, N.W. Wu, Neural network-based estimation of stress concentration factors for steel multiplanar tubular XT-joints. Journal of Constructional Steel research 57, 97-112, 2001.
  • [45] S.W. Choi, E.J. Song, H.T. Hahn, Prediction of fatigue damage growth in nothed composite laminates using an artificial neural network, Composite Science and Technology 63 (2003) 661-675.
  • [46] T.T. Chow, G.Q. Zhang, Z. Lin, C.L. Song, Global optimization of absorption chiller system by genetic algorithm and deural network. Energy and Building 34, 103-109, 2002.
  • [47] R.M. Christensen, Mechanics of Composite Materials, J.Wiley &Sons, 1979.
  • [48] L.O. Chua, L. Yang, Cellular Neural Networks: Theory, IEEE Trans. Circuits and Systems, CAS-35, October 1988. 1257-1274.
  • [49] L.O. Chua, L. Yang, On the universe of stable Cellular Neural Networks. International Journal of Circuit Theory and Application. 20:9-10, 497-518, 1992 [50] Y.-K. Chung, A neuro-based expert system for facility layout construction, Journal of Intelligent Manufacturing 10, 359-385, 1999.
  • [51] J.Y. Clark, K. Warwick, Artificial Keys for Botanical Identification using a Multilayer Perceptron Neural Network (MLP). Artificial Intelligence Review 12, 95-115, 1998.
  • [52] J. Cytowski, Algorytmy genetyczne, Podstawy i zastosowania. Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1996.
  • [53] A. Darabi, X. Maldague, Neural network based defect detection and depth estimation in TNDE. NDT&E international 35, 165-175, 2002.
  • [54] E. Davalo, P. Nairn, Des Reseaux de Neurones, Eyrolles, Paris, 1990.
  • [55] B. Davidson, U. Roy And Ch. Ludden, An expert system for the design and analysis of composite structures, HE Transactions 31, 303-312, 1999.
  • [56] R. de Borst, O.M. Heeres, Computational Plasticity, Lecture Notes CISM-cours, 2000.
  • [57] S. Del Linz, R. Spallino, Identificazione Parametrica con Reti Neurali Artificiali per un Modello Costitutivo in Elasto-Plasticita Finita con Incrudimento Misto e Danneggiamento Duttile, Aimeta - XIII convegno Italiano di Meccanica Computazionale (2000).
  • [58] P. Dębski, S. Furmańczyk, O. Gajl, M. Lefik, M. Golubiewski Computer Aided Training in Theoretical Mechanics and Mechanics of Materials and Structures, X polish Conference “ Computer Methods in Mechanics” Swiniujście pp 141-148, 1991.
  • [59] P. Dębski, S. Furmańczyk, Metodyka Zbierania i Gromadzenia Informacji o Stanie Technicznym Obiektów Inżynierskich, Raport Kat. Mech. Materiałów PŁ, 1993.
  • [60] W.P.S. Dias, S.P. Pooliyadda, Neural networks for predicting properties of concrets with admixtures. Construction and Building Materials 15, 371-379, 2001.
  • [61] H., Dumontet, (1990), Homogénéisation et Effets de Bords dans les Matériaux Composites, These de Doctorat d'Etat, L'Université Pierre et Marie Curie, Paris 6.
  • [62] G.J. Dvorak, Inelastic composite materials: transformation analysis and experiments, in Continuum Micromechanics, P. Suquet (ed), Springer, 291-347, 1997.
  • [63] G.J. Dvorak, J. Zang, Transformation Field Analysis of Damage Evolution Composite Materials, J.Mech.Phys.Solids, 49, (2001), 2517-2541.
  • [64] H. El Kadi, Y. Al-Assaf, Energy-based fatigue life prediction of fiberglass/epoxy composites using modular neural networks, Composite Structures 57, 85-89, 2002.
  • [65] A.M. Elsharkwy, R.B.C. Gharbi, Comparing classical and neural regression techniques in modeling crude oil viscosity. Advances in Engineering Software 32, 215-224,2001.
  • [66] E.M.R. Fairbairn, N.F.F. Ebecken, C.N.M. Paz, F.-J. Ulm, Determination of probabilistic parameters of concret: solving the inverse problem by using artificial neural networks, Computer and Structures, 78, 497-503, 2000.
  • [67] F. Feyel, Multiscale FE2 elastoviscoplastic analysis of composite structures, Computational Material Science 16, 344-354, 1999.
  • [68] W. Findeisen, J. Szymanowski, Teoria i metody obliczeniowe optymalizacji, PWN, Warszawa, 1980.
  • [69] J.Q. Fish, Multiscale Damage Modelling for composite materials: Theory and Computational Framework (wzięte ze strony Internetowej J. Fish, gdzie można znaleźć wiele innych artykułów na ten sam temat).
  • [70] I. Flood, Model dynamie engineering process when the governing equations-are unknown. Computer and Structures 67, 367-374, 1998.
  • [71] I. Flood, L. Muszyński S. Nandy, Rapid analysis of externally reinforced concrete beams using neural networks. Computer and Structures 79, 1553-1559, 2001.
  • [72] G.A. Francofort, Homogenization and Fast Oscillations in Linear Thermo-elasticity in Numerical Methods for Transient and Coupled Problems, eds. R.Lewis, E.Hinton, P.Betess and B.Schrefler, Pineridge Press, Swansea, 1984, 82-392.
  • [73] R. Gajewski (edytor), Sieci Neuronowe, Algorytmy genetyczne, Zbiory rozmyte. Wydawnictwo PTMK, Rzeszów, 1999.
  • [74] M. Galante, Genetic Algorithms as an Approach to Optimize Real-World Trusses, Int. Journal for Numerical Methods in Engineering, vol. 39, 361-382, 1996.
  • [75] U. Galvanetto, V. Naumov, V. Palmov, B.A. Schrefler, Analysis of the mechanical behaviour of cable-in-conduit superconductors under transverse cyclic loading, Internat. J. of Computational Civil and Structural Engng 2000; 1(2):1-10.
  • [76] S.R. Garcia, M.P. Romo, V. Taboada-Urtuzuastegui, Knowledge-based modelling of sand behaviour, Proceedings of ECCOMAS 2000, Barcelona, 11-14, 2000.
  • [77] D. Gawin, M. Lefik, Some Applications Of Neural Networks In Building Physics. Abstracts of 14th Polish Conference on Computer Methods in Mechanics. PCCMM'99, Rzeszów, Poland, 103-104 (1999).
  • [78] D. Gawin, M. Lefik, Some applications of Neural Networks in Building Physics. Arch. Civil Eng. Vol 46 nr 2, 255-271, 2000.
  • [79] D. Gawin, M. Lefik, Modelling of hygro-thermal phenomena with hysteresis using FEM and ANN. Abstracts of 14th Polish Conference on Computer Methods in Mechanics PCCMM'99 Rzeszów, Poland, 101-102, 1999.
  • [80] D. Gawin, M. Lefik, Application of ANN in hygro-thermal modelling of building materials, Leuven.
  • [81] D. Gawin, M. Lefik, B.A. Schrefler, ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis, Int. J. Numer. Meth. Engng. 50, 299-323,2001.
  • [82] D. Gawin, M. Lefik, B.A. Schrefler, F.E. And A.N.N. Modelling of Hygro-The- rmo-Mechanical Behaviour Of Concrete With Capillary Condensation Hysteresis. Abstracts of Fifth US National Congress On Computational Mechanics. Fifth Us National Congress On Computational Mechanics, August 4-6, 1999, University Of Colorado At Boulder, USA p. 478, 1999.
  • [83] D. Gawin, M. Lefik, B.A. Schrefler, Application of ANN to coupled hygro-thermo- mechanical analysis of porous media with sorption hysteresis. Proceedings of European Congress on Computational Methods in Applied Sciences (paper on CD). ECCOMAS'2000, Barcelona p. 127, 2000.
  • [84] D. Gawin, M. Lefik, B.A. Schrefler, Effect of sorption isotherms hysteresis on hygro-thermo-mechanical behaviour of concrete. 4th EUROMECH Solid Mechanics Conference, June 2000, Metz, France, Vol 1 p. 137, 2000.
  • [85] D. Gawin, M. Lefik, Komputerowa Symulacja Procesów Cieplno-Wilgotnościowych z Histerezą Kapilarną w Betonie Przy Użyciu Metody Elementów Skończonych i Sztucznych Sieci Neuronalnych. Zbiór Referatów, V Warsztaty Naukowe PTSK,, Symulacja W Badaniach I Rozwoju ". R. Bogacz and A. Tylikowski (eds.) V Warsztaty Naukowe PTSK „Symulacja W Badaniach I Rozwoju", Jelenia Góra '98, PTSK Warszawa, 100-113, 1999.
  • [86] M.G.D. Geers, V. Kouznetsova, W.A.M. Brekelmans, Computational homogenisation of the mechanics of materials: from microstructure to properties, Proceedings of the CMM-2003, Editors: T. Burczynski, P. Fedelinski and E. Majchrzak, 15th International Conference on Computer Methods in Mechanics, June 3-6, 2003, Gliwice/Wisla, Poland.
  • [87] J. Ghaboussi, J.H. Garrett, X. Wu, Knowledge-Based Modelling of Material Behaviour with Neural Networks, Journal of Engineering Mechanics, 117, 132-151, 1991.
  • [88] J. Ghaboussi, D.A. Pecknold, M. Zhang, R.M. Haj-ali, Autoprogressive training of neural network constitutive models. Int. J. Numer Meth Engng, 42, 105-131, 1998.
  • [89] J. Ghaboussi, D.E. Sidarta, New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling, Computers and Geotechnics, Vol. 22, No. 1, 29-52, 1998.
  • [90] A.Z. Ghalwash, A. Recency, Inference Engine for Connectionist Knowledge Bases, Applied Intelligence 9, 201-215, 1998.
  • [91] R. Giampieretti, A. Corigliano, G. Maier, parameter identificatio for the constitutive modelling of composites and laminates, Aimeta XIII convegno Italiano di Meccanica Computazionale (2000) (doktorat R. Giampieretti)
  • [92] A.T.C. Goh, Empirical design in geotechnics using neural networks, Geotechnique, 45, No.4, 709-714, 1995, (technical Note).
  • [93] D.E. Goldberg, Genetic Algorithms in Search, Optimisation, and Maschine Learning, Addison-Wesley, 1998.
  • [94] D.E. Goldberg, Algorytmy genetyczne i ich zastosowanie, Wydawnictwo Naukowo Techniczne, Warszawa, 1998.
  • [95] A.I. Gonzalez, M. Grana, A. D'Anjou, F.X. Albizuri, F.J. Torrealdea, A comparison of Experimental Results with an Evolution Strategy and Competitive Neural Networks for Near Real-Time Xcolor Quantization of Image Sequences, Applied Intelligence 8, 43-51, 1998.
  • [96] V. Gotlib, T. Sato, A.I. Beltzer, Neural computing of effective properties of random composite materials, Computer and Structures 79 (2001) 1-6.
  • [97] D. Graupe, Principles of Artificial Neural Networks, World Scientific, 1997.
  • [98] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edition, Academic Press, London, 1982.
  • [99] J. Groundspenkis, Causal domain model driven knowledge acquisition for expert diagnosis sysyem development. Journal of Intelligent Manufacturing, 9, 547-558, 1998.
  • [100] M. Gryczmański, Wprowadzenie do opisu sprężysto-plastycznych modeli gruntów. Studia z zakresu inżynierii nr 40, PAN-KILiW, IPPT, Warszawa 1995.
  • [101] P. Hajela, C.-L. Lin, Genetic search strategies in multicriterion optimal design, Structural Optimization, 4, 99-107, 1992.
  • [102] G. Hedenblad, Materialdata För Fukttransportberäkningar (po szwedzku), Byggfor-skningsradet, Stockholm, 1996.
  • [103] P. Hajela, Z.P. Szewczyk, Neurocomputing strategies in structural design- on analysing weights of feedforward neural networks, Structural Optimization, 8, 236-241, 1994.
  • [104] M. Hajkowski, Z. Ignaszak, M. Lefik, T. Łodygowski, Prognozowanie właściwości mechanicznych odlewów ze stopów Al-Si za pomocą sieci neuronowych, Archiwum Odlewnictwa - Archives of Foundry, PAN- Katowice, Vol. 2, Nr 4, 353-361, 2002, ISSN 1642-5308.
  • [105] A.M. Hammited, E.B. Bartelett, Determining Functional Relationships from Trained Neural Networks. Math. Comput. Modelling Vol. 22 No. 3, 83-103, 1995.
  • [106] M.E. Haque, K.V. Sudhakar, Prediction of Corrosion-fatigue Behaviour of DP Steel through Artificial Neural Network. Internationaljournal of Fatigue 23, 1-4,2001.
  • [107] Ch.S. Hermann, Symbolical reasoning about Numerical data: Hybrid Approach, Applied Intelligence 1, 339-354, 1997, Kluwer Academic Publishers.
  • [108] J. Hertz,A. Krogh, G.R. Palmer, Introduction to The Theory of Neural Computation, Lecture Notes Volume I, Santa Fe Institute Studies in the sciences of Complexity, 1991, Addison-Wesley.
  • [109] J. Hertz, A. Krogh, G.R. Palmer: Wstęp do Teorii Obliczeń Neuronowych, Wydawnictwo Naukowo Techniczne, Warszawa, 1996.
  • [110] J.W. Hines, R.E. Uhring, D.J. Wrest, Use of Autoassociative Neural Network for Signal Validation. Journal for Intelligent and Robotic Systems 21, 143-154, 1998.
  • [111] Z.S. Hippe, Expert Sysyems - Current Status and Future Solutions, Procedings of Conference AIMECH 2001, Gliwice, 77-81.
  • [112] N.K. Hong, S.-P. Chang, S.Ch. Lee, Development of ANN-based preliminary structural design system for cable-stayed bridges. Advances in Engineering Software 33, 85-96, 2002.
  • [113] K. Hornik, Approximation capabilities of multilayered feedforward networks, Neural Networks, vol. 4, 251-257, 1991.
  • [114] K. Hornik, M. Stinchcombe, H. White, Multilayered feedforward networks are universal approximators, Neural Networks, vol. 2, 359-366, 1989.
  • [115] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using multilayered feedforward networks, Neural Networks, vol. 3, 551-560, 1990.
  • [116] D. Horvath, M. Gmitra, The neural network two-scale model of the magnetic dot array, Journal of Magnetism and Magnetic Materials 256, 195-213, 2003.
  • [117] Z.Q. Hou and A. Lucifredi, On the Use of Neural Networks for Identification of Linear and Nonlinear Systems, Meccanica 30, 377-388, 1995.
  • [118] Y.H. Hu, J.-N. Hwang (eds.), Handbook of Neural Network' Signal Processing, CRC Press (2002).
  • [119] H. Huang, J. Cao, On global asymptotic stability of recurrent neural networks with time-varying delays, Applied Mathematicsand Computations (in print, 2003).
  • [120] A.-C. Huang, Y.-F. Chiang, Function approximation using serial input neuron, Neurocomputing 47, 85-101, 2002.
  • [121] N. Huber, I. Tsagrakis, Ch. Tsakmakis, Determintion of constitutive properties of thin metallic films on substrates by spferical indentation using neural networks, Internationaljournal of Solid and Structures, 37 (2000) 6499-6516.
  • [122] N. Huber, Ch. Tsakmakis, A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery, Computer Method in Applied Mechanics and Engineering, 191, 353-384, 2000.
  • [123] N. Huber, Ch. Tsakmakis, Determination of Constitutive Properties from spherical indentation data using neural networks. Part I: the case of pure kinematical hardening in plasticity laws, Journal of the Mechanics and Physics of Solids 47, 1569-1588, 1999.
  • [124] J.E. Hurtado, D.A. Alvarez, Reliability Assessment of Structural Systems Using Neural Networks, Procedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, Barcelona.
  • [125] J.E. Hurtado, D.A. Alvarez, Neural-network-based reliability analysis: a comparative study, Computer Methods in Applied Mechanics and Engineering, 191, 113-132,2002.
  • [126] J.E. Hurtado, Analysis of one-dimensional stochastic finite elemnts using neural networks. Probabilistic Engineering Mechanics 17, 35-44, 2002.
  • [127] A.J. Hussain, P. Listias, Recurrent pi-sigma networks for DPCM image coding, Neurocomputing (in print, 2003).
  • [128] W.M. Jenkins, A neural network for structural re-analysis. Computer and Structures 72, 687-698, 1999.
  • [129] X. Jin, L.R. Cheu, D. Srinivasan, Development and adaptation of constructive probabilistic neural network in freeway incident detection. Transportation research Part C, 10, 121-147, 2002.
  • [130] CH. Juang, T. Jiang and R.A. Christopher Three-dimensional site characterisation: neural network approach. Géotechnique 51, No. 9, 799-809, 2001.
  • [131] K. Kachrimanis, V. Karamyan, S. Malamataris, Artificial neural networks and modeling of powder flow, Int. Journal of Pharmaceutics 250, 13-23, 2003.
  • [132] T. Kacprzak and K. Slot, Sieci Neuronowe Komórkowe, Wydawnictwo naukowe PAN, Warszawa-Łódź, 1995.
  • [133] Y. Kamp, M. Hasler, Réseaux de neurones récursifs pour mémoires associatives, Presses Polytechniques et Universitaires Romandes (Collection Electrique), Paris, 1990.
  • [134] K. Kaneko, K. Terada, T. Kyoya, Y. Kishino, Global-local analysis of granular media in quasi-static equilibrium, International Journal of solid and structure 40, 4043-4069, 2003.
  • [135] J.-Y. Kang, J.-H. Song, Neural Network Application in determining the Fatigue Crack Opening Load, Int. Journal of fatigue, Vol. 20 no 1, 57-69, 1998.
  • [136] N. Kartam, I. Flood, Construction simulation using parallel computing environments. Automation in Construction 10, 69-78, 2000.
  • [137] J. Kasperkiewicz Analysis of database on concrete like materials (in Polish). Materiały XL VIII Konferencji Naukowej KIL W PAN i KN PZITB, Opole-Krynica 2002. Vol. 3 “Materiały Budowlane”, 35-42, 2002.
  • [138] J. Kasperkiewicz, The application of ANNs in certain material analysis problems. Journal of Material Processing technology 106, 74-79, 2000.
  • [139] J. Kasperkiewicz, Alterman D., Artificial Intelligence in Predicting Properties of Brittle Matrix Composite. W: Brittle matrix Composites 6 (BMC 6) Ed-s Brandt, Li and Marshall. Woodhead Publ. Ltd. & ZTUREK R-S. Inst., Cambridge and Warsaw 485-496, 2000.
  • [140] J. Kasperkiewicz, Racz J., Dubrawski A., HPC strength Prediction Using Artificial Neural Network. ASCE Journal of Computing in Civil Engineering Vol.9, No.4, 279-284, 1995.
  • [141] J. Kasperkiewicz, Prediction of concrete properties using artificial neural network. Engng. Transactions Vol. 45 No. 2, 251-263, 1997.
  • [142] A. Kaveh, H. Servati, Design of double layer grids using backpropoagation neural networks. Computers and Structures 79, 1561-1568, 2001.
  • [143] S.l. Khan, S.G. Ritchie, Statistical and neural classifiers to detect traffic operational problems on urban arterials. Transpotrtation research, Part C. 6, 291-314, 1998.
  • [144] P. Kies, Dobór parametrów binarnego algorytmu genetycznego metodą off-line, Instytut Naukowo Badawczy ZTUREK, Warszawa 2000.
  • [145] C.Y. Kim, G.J. Bae, S.W. Hong, C.H. Park, H.K. Moon, H.S. Shin, Neural network based prediction of ground surface settlement due to tunelling, Computers and Geomechanics 28, 517-547, 2001.
  • [146] D.J. Kim, B.M. Kim, Application of neural network and FEM for metal forming processes, Int. J. of Machine Tools & Manufacture 40, 911-925, 2000.
  • [147] J.H. Kim, Y.H. Kim, A predictor-corrector method for structural nonlinear analysis. Comput. Methods Appl. Mech. Engrg. 191, 959-974, 2001.
  • [148] M. Kleiber (ed.) Artificial Intelligence in Computational Engineering, Ellis Horwood(1990). 149] L.T. Koczy, A. Zorat, Fuzzy systems and approximation, Fuzzy Sets and Systems 85, 203-222, 1997.
  • [150] A.N. Kolmogorow, O predstawlienii nieprierivnych funkcji nieskolkih peremennyh v vidie superpozicji niepreryvnych funkcji odnovo peremennovo i slozeniia, Doklady Akademii Nauk CCCR, Tom 114, Nomer 5, 953-956, 1957. [151] D. Kolymbas, Elements of hypoplasticity. In Constitutive Modelling of Geomaterials, B. Cambou, C. Di Prisco (eds.), Revue Française de Geotechnique. [152] D. Kolymbas, hypoplasticity then and now(eds.), Revue Française de Geotechnique.
  • [153] S. Kortesis, P.D. Panagiotopoulos, Neural networks for computing in structural analysis: Methods and prospects of applications, Int. J. Num. Meth. Eng. 36, 2305-2318, 1993.
  • [154] S.-Q. Kou, Y. Huang, X.-C. Tan, P.-A. Lindquist, Identification of the governing parameters related to rock indentation depth by using similarity analysis. Engineering Geology 49, 261-269, 1998.
  • [155] J.R. Koza, M.A. Keane, J. You, F.H. Bennet, W. Mydlowec, Automatic Creation of Human-Competitive programs and Controllers by Means of Genetic Programing. Genetic Programming and Evolvable machines, 1, 121-164,2000.
  • [156] J.F. Kreider, „Neural network applied to building energy studies a tutorial" in Workshop on Application of System Identification in Energy Savings in Buildings, J.J. Bloem (ed.), Joint Research Center European Commision, Oct. 25-27, 1993.
  • [157] J.F. Kreider, „Neural network applied to building energy studies - a tutorial and case study", 234-249, in System Identification Applied to Building Performance Data, J.J. Bloem (ed.), Joint Research Center European Commision, ECSC-EC-EAEC Brussels, Luxembourg, 1994.
  • [158] V. Kûrkova, Kolmogorov's theorem and multilayer neural networks, Neural Networks, 5, 501-506, 1992.
  • [159] J. Kusiak, R. Kuziak, Modelling of microstructure and mechanical properties of steel using the artificial neural networks, Journal of Material Processing Technology 127, 115-121, 2002.
  • [160] K. Kuźniar, E. Maciąg, R. Obiała, Z. Waszczyszyn, Application of neural networks in natural periods identification and simulation of prefabricated building response. Soil dynamics and Earthquake Engineering 20, 217-222, 2000.
  • [161] K. Kuźniar, Z. Waszczyszyn, Neural analysis of vibration problems of real flat buildings and data pre-processing, Engineering Structures 24, 1327-1335, 2002
  • [162] P. Ladeveze, Local Effects in the Analysis of Structures, P.Ladeveze (ed.), Elsevier Publishers, 1985.
  • [163] P.L. Lai, C. Fyfe, A Family of canonical Correlation networks, Neural Processing Letters, 14, 93-105, 2001.
  • [164] S.S.Y. Lam, K.L. Petri, A. Smith, Prediction and optimization of a ceramic casting process using a hierarchical hybrid system of neural networkc and fuzzy logic, HE Transaction, 32, 83-91, 2000.
  • [165] M. Lefik, Some Applications of Asymptotic Homogenisation in Engineering Practice - Technique of Correctors. In Homogenization Methods in Civil Engineering. W. Barański and C. Boutin (eds.) Workshop TUL-ENTPE, Szklarska Poręba, January 211-235, Wyd. Politechniki Łódzkiej 2002.
  • [166] M. Lefik, Inteligentna Baza Danych o Stanie Technicznym Obiektów Inżynierskich. Materiały XL Konferencji Naukowej Komitetu Inż. Lądowej i Wodnej PAN i Komitetu Nauki PZITB, Krynica 1994, 134-142, 1994.
  • [167] M. Lefik, Modified BP Artificial Neural Network As An Incremental Non-Linear Constitutive Model. Proceedings of European Conference on Computational Mechanics (CD). ECCM-2001, Cracow, Poland (2001).
  • [168] M. Lefik, Modified BP Artificial Neural Network To Approximate A Non-Linear Effective Constitutive Law For A Composite. Abstracts of XXXIII Polish Solid Mechanics Conference. SolMec'2000, 135-136, 2000.
  • [169] M. Lefik, Finite element model for 3-D analysis of composite plates. Engineering Transaction (IFTP). Vol. 43 1-2, 225-244, 1995.
  • [170] M. Lefik, An Example of The Complex Neural Network To Model a Non-Linear Material Behaviour. Abstracts of 14th Polish Conference on Computer Methods in Mechanics. PCCMM'99 Rzeszów, Poland, 213-214, 1999.
  • [171] M. Lefik, An expert system using artificial neural network as an „intelligent shell" over a data-base. Proceedings ofAI-METH 2002 - Methods of Artificial Intelligence. T. Burczyński, W. Cholewa, W. Moczulski (eds.) AI-MECH 2002 Gliwice 247-250, 2002, ISBN 83-914632-3-0.
  • [172] M. Lefik, Hybrid, Finite Element-Artificial Neural Network Model for Composite Materials, Proc. Of CMM-2003 - Computer Methods in Mechanics, June 3-6, 2003, Gliwice, Poland (on CD).
  • [173] M. Lefik, D. Gawin, Identyfikacja dynamicznej odpowiedzi tennicznej przegrody warstwowej przy zastosowaniu sieci neuronowych, Mat. XLIII Konf. Naukowej KILiWPAN i KNPZITB, Krynica, 1997, t.6. 175-182, 1996.
  • [174] M. Lefik, D. Gawin, Modelowanie histerezy kondensacji kapilarnej w betonie przy użyciu sieci neuronowych, Mat. XLIV Konf. Naukowej KILiW PAN i KN PZITB, Krynica, 1998. t.6, 165-172, 1998.
  • [175] M. Lefik, D. Gawin, Identyfikacja natężenia źródeł ciepła i masy w dojrzewającym betonie za pomocą zastosowania sieci neuronowych. Mat. XL VII Konf. Naukowej KILiW PAN i KN PZITB, Krynica 2001, Vol. 6, 125-132, 2001.
  • [176] M. Lefik, D. Gawin, Sieci neuronowe jako narzędzie audytora do wstępnej analizy przedsięwzięć termorenowacyjnych, Mat. XLII Konf. Naukowej KILiW PAN i KN PZITB, Krynica 1996, t.6, 111-118, 1996.
  • [177] M. Lefik, D. Gawin, Sieci Neuronowe W Fizyce Budowli, Przegląd Zastosowań i Perspektywy Rozwoju. Materiały VI Ogólnopolskiej Konferencji Nauk.-Techn. ,,Fizyka Budowli w Teorii i Praktyce". VI Ogólnopolska Konferencja Fizyki Budowli, Łódź 1997, Wyd. Politechniki Łódzkiej, 266-273, 1997.
  • [178] M. Lefik, D. Gawin, Application Of Neural Networks For Identification Of Function Describing Heat And Mass Sources Intensity During Hardening Of Fresh Concrete. Proceedings of European Conference on Computational Mechanics (CD). ECCM-2002 Cracow, Poland (2001).
  • [179] M. Lefik, Artificial neural network as a numerical representation of an incremental constitutive law. Poromechanics II. J.-L. Auriault et Al. (eds.), 251-257, A.A. Balkema Publishers (2002).
  • [180] M. Lefik, Artificial Neural Network for Modelling an Effective Behaviour of Composite Materials. WCCM V, Fifth World Congress on Computational Mechanics, July 7-12. 2002, Vienna, Austria. Abstract in Proceedings, full text in Internet Conference Site.
  • [181] M. Lefik, Modelling of material behaviour with composed, cellular – back propagation neural network. 4th EUROMECH Solid Mechanics Conference, June 2000 Metz, France, (2000).
  • [182] M. Lefik, Application Of a Composed, Cellular and BP, for Acquisition of Constitutive Data and Solving Boundary Value Problem in Mechanics. In Computational Mechanics - New Frontiers for New Millenium. S. Valliappan and N. Khalili (eds.) APCOM'01 Elsevier Science Syndey, Australia Vol. 2 1321-1329,2001.
  • [183] M. Lefik, Modelling Of Non-Linear Material Behaviour Using Artificial Neural Network. ALERT Workshop, Aussois'99, Aussois, France (1999).
  • [184] M. Lefik, Use of artificial neural network to define a non-linear effective constitutive law for a composite. Proc. 13th Polish Conf. Computer Methods in Mechanics PCCMM'97, Poznan, 725-732, 1997.
  • [185] M. Lefik, Justification of a refined theory of stratified plates via asymptotic method and a corresponding, multistep FE model with correctors in a domain of e boundary layer. Abstracts of XXXII Polish Solid Mechanics Conference, XXXII Polish Solid Mechanics Conference SolMec '98, 235-236, 1998.
  • [186] M. Lefik, Designing of optimal truss as a computer aided training in mechanics of materials and structures, XPolish Cocference ,”Computer Methods in mechanics”, Świnoujście, 14-17 May 1991, Vol.2, s.461-468.
  • [187] M. Lefik, B.A., Schrefler, 3D finite element analysis of composite beams with parallel fibres based on the homogenization theory, Computational Mechanics, 14, 1,2-15, 1994.
  • [188] M. Lefik, B.A. Schrefler, Elasto-Thermodynamic behaviour of regular composite structure for nuclear fusion device. Abstract in Proc. of XXXI Polish Solid Mechanics Conference SolMec'96. XXXI Polish Solid Mechanics Conference SolMec'96, Mierki, September 1996.
  • [189] M. Lefik, B.A. Schrefler, Application de la méthode d'homogenisation a l'analyse statique d'une bobine superconductrice. Actes du colloque national en calcul des structures, Giens (1993). Colloque National en Calcul des Structures, Giens, France - 1993, HERMES edition, Giens, France (1993).
  • [190] M. Lefik, B.A. Schrefler, - Homogenized Material Coefficients for 3D Elastic Analysis of Superconducting Coils, in: P.Ladeveze and O.C. Zienkiewicz (Editors,) New Advances in Computational Structural Mechanics, Elsevier Science Publishers B.V.I992.
  • [191] M. Lefik, B.A. Schrefler, Parameter Identification Versus Fully Non-Symbolic ANN Representation of a Constitutive Law - Engineering Example And a Comparative Study. Proceedings ofAI-MECH2001 - Methods Of Artificial Intelligence In Mechanics And Mechanical Engineering. 113-117, 2001.
  • [192] M. Lefik, B.A. Schrefler, One-dimensional model of cable-in-conduit superconductors under cyclic loading using artificial neural networks. Fusion Engineering and Design, Elsevier Science Vol/Issue 60/2, 105-117, 2002.
  • [193] M. Lefik, B.A. Schrefler, FE modelling of boundary layer correctors for composites using the homogenisation theory. Engineering Computations. Vol. 13 N°6, 31-42, 1996.
  • [194] M. Lefik, B.A. Schrefler, Artificial Neural Network for parameter identifications for an elasto-plastic model of super-conducting cable under cyclic loading. Computers & Structures, 80/22, 1699-1713, 2002.
  • [195] M. Lefik, B.A. Schrefler, Use of homogenization method in the analysis of superconducting coils. Proc. of P' European Mechanica User Conference - Industrial Reality and Design Optimization. Venezia, 82-85, 1994
  • [196] M. Lefik, B.A. Schrefler, Modelling of Nonstationary Heat Conduction Problems In Micro-Periodic Composites Using Homogenisation Theory With Corrective Terms. Arch. Mech. Vol 52 nr 2, 203-223, 2000.
  • [197] M. Lefik, B.A. Schrefler, Application of the homogenization method to the analysis of superconducting coils, Fusion Engineering and Design, 24, 231-255, 1994.
  • [198] M. Lefik, B.A. Schrefler, Artificial neural network as an incremental non-linear constitutive model for a finite element code. Computer Methods in Applied Mechanics and Engineering, Elsevier Volume/Issue 192/28-30 pp. 3265-3283 (2003).
  • [199] Xi Lin, Simultaneous approximation of multivariate functions and their derivatives by neural networks with one hidden layer, Neurocomputing, Volume 12, Issue 4, 1 August 1996, Pages 327-343
  • [200] J.T. Lin, D. Bhattacharyya, V. Kecman, Multiple regression and neural network analyses in composites machining, Composite Science and Technology 63, 539-584, 2003.
  • [201] J.C. Lin, Using FEM and neural network prediction on hydrodynamic deep drawing of T-piece maximum length, Finite Element in analysis and Design 39, 445-456, 2003.
  • [202] P. Liu, Universal approximations of continuous fuzzy-valued functions by multilayer regular fuzzy neural networks, Fuzzy Sets and Systems 119 (2001) 313-320.
  • [203] G.R. Liu, Y.G. Xu, Z.P. Wu, Total solution for structural mechanical problems. Computer Methods in Applied Mechanics and Engineering 191, 989-1012, 2001.
  • [204] A.P. Loh, K.O. Looi, K.F. Kong, Neural network modelling and control strategies, J.Proc.Control., Vol. 5, No 6, 355-362, 1995.
  • [205] A.V. Luikov, Heat and Mass Transfer in Capillary Porous Bodies, Pergamon Press, London, 1966.
  • [206] N. Mai-Duy, T. Tran-Cong, Approximation of function and its derivatives using radial basis function networks, Applied Mathematical Modelling 27, 197-220, 2003.
  • [207] Benham Malakooti, Zhou Ying Qing, Approximating Polynomial Function by Feedforward Artificial Neural Networks: Capacity Analysis and Design, Applied Mathematics and Computation, 90, 27-52, 1998.
  • [208] S. Mandayam, K. Hwang, S.S. Udpa, L. Udpa, W. Lord, M. Atzal, Characterization of gas pippeline inspection signals using wavelet basis function neural networks. NDT&E International 33, 531-545, 2000.
  • [209] F. Manoel, and W.T. Lee, Self- organizing Network for Optimum Supervised Learning, IEEE Transaction on Neural Networks, 1, 100-110, 1990.
  • [210] J. Mańdziuk, Sieci neuronowe typu Hopfielda. Teoria i przykłady zastosowań. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2000.
  • [211] G. Marcone, G. Martinelli, L. Lancetti, Eye Tracking in Image Sequences by Competitive Neural Networks. Neural Processing Letters 1, 133-138, 1998.
  • [212] T. Marvala, Scaled conjugate gradient and Bayesian training of neural network for fault identification in cylinders. Computer and Structures 79, 2793-2803, 2001.
  • [213] S.F. Masri, A.W. Smyth, A.G. Chassiakos, M. Nakamura, T.K. Caughey, Training Neural Networks by Adaptive Random Search Techniques, Journal of Engineering Mechanics, 2 (1999) 123-132.
  • [214] J. McClelland, D.E. Rumelhart, Explorations in Parallel Distributed Processing, MIT, 1988.
  • [215] C. McCulley, C.L. Bloebaum, A genetic tools for optimal design sequencing in complex engineering sysyems, Structural Optimization, 12, 186-201, 1996.
  • [216] L. Mei, G.J. Levermore, Simulation and validation of a VAV system with an ANN fan model and non-linear VAV box model. Building and Environment 37, 277-284, 2002.
  • [217] K.S. Metaxiotis, D. Askounis, J. Psarras, Expert sytsem in planning and scheduling: A state-of-the-art. Survey, Journal of Intelligent Manufacturing. 13, 253-260, 2002.
  • [218] H.N. Mhaskar, C.A. Micchelli, Approximation by superposition of sigmoidal and radial basis functions, Advances Applied Mathematics, vol. 13, 350-373, 1992.
  • [219] G. Mihalakakou, M. Santamouris, A. Tsangrassoulis, On the energy consumption in residential buildings. Energy and Buildings 1404, 1-10, 2002.
  • [220] S. Mohamad, K. Gopalsamy, exponential stability of continuous-time and discret-time cellular neural networks with delays, Applied Mathematics and Computation 135 (2003) 17-38.
  • [221] G. Mucha, Z. Waszczyszyn, Hybrid Neural-Network/Computational Program for Bending Analysis of Elastoplastic Beams, Proc. of the XIII Polish Conf.on Computer Methods in Mechanics, 1997', p. 949-956.
  • [222] A. Mukherjee and V. Ravindra, A cascading network of artificial neurones for structural health monitoring, Computational Mechanics - New Frontiers for New Millenium, S. Valliapan and N. Khalili (eds.), Elsevier 2001, 1289-1297.
  • [223] L. Mussone, A. Ferrari, M. Oneta M., An analysis of urban collisions using an artificial intelligence model. Accident Analysis and Prevention 31, 705-718, 1999.
  • [224] M.Y. Najjar, I.A. Basheer, A.W. Naouss, On the Identification of Compaction Characteristics by Neuronets, Computers and Geotechnics 18, 167-187, 1996.
  • [225] K.S. Narendra, K. Parthasarathy, Identification and control of dynamic systems using neural networks, IEEE Trans. Neural Networks, vol. 1, 4-27, 1990.
  • [226] K.S. Narendra, K. Parthasarathy, Gradient methods for optimisation of dynamical systems containing neural networks, IEEE Trans. Neural Networks, vol. 2, 252- 262, 1991.
  • [227] D. Navabi, L.M.L. Delcambre, Multi-Path Reasonong in a Database, Journal of Intelligent Information Systems 8, 245-266, 1997.
  • [228] T. Nguyen-Thien, T. Tran-Cong, BEM-neural network approach for polymeric liquid flow analysis. Engineering Analysis with Boundary Elements 24, 95-106, 2000.
  • [229] Q.Y. Ni, Y. Chen,. J.M. Ko, D.Q. Cao, Neuro-control of cable vibration using semi-active magneto-rheological dampers. Engineering Structures, 24, 295-307, 2002.
  • [230] H.-G. Ni, J.-Z. Wang, Prediction of compressing strength of concrete by neural networks. Cement and Concrete Research 30, 1245-1250, 2000.
  • [231] J. Niczyj, „Optymalizacja Kratownicy z zastosowaniem algorytmu genetycznego", Mat. XLII Konf. Naukowej KILiWPAN i KN PZ1TB, Krynica, 1996, 125-131, 1996.
  • [232] A. Nijuhuis, Noordman N.H.W. and H.H.J, ten Kate, „Mechnical and Electrical testing of an ITER CS1 Model Coil Conductor under Transverse Loading in a Cryogenic Press", Preliminary Report, University of Twente, March 10, 1998.
  • [233] S-K. Oh, W. Perdycz, B-J. Park, Polynomial neural network architekture: analysis and design, Computers and Electrical Engineering (in print 2003).
  • [234] T. Ohkami, G. Swoboda, Parameter identification of viscoelastic materials, Computers and Geotechnics 24, 279-295, 1999.
  • [235] A.C. Okafor, A. Dutta, Optimal ultrasonic pulse repetition rate for damage detection in plates using neural networks. NDT&E international 34, 468-481, 2001.
  • [236] H. Okuda, Neural network-based parameter estimation for non-linear finite element analyses, Engineering Computations Vol. 15 No. 1, 103-138, 1998.
  • [237] H. Okuda, G. Yagawa, Multicolour neural network with feedback mechanism for parallel Finite Element fluid analysis, in Parallel Solution Methods in Computational Mechanics, M. Papadrakis (ed.), Wiley & Sons, Chichester, 1997.
  • [238] T. Olofsson, S. Andersson, Overall heat loss coefficient and domestic energy gain factor for single-family buildings. Building and Environment, (in print 2003)
  • [239] T. Olofsson, S. Andersson, Long-term prediction based on short-term measured data. Energy and Building 33, 85-91, 2001.
  • [240] S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Wydawnictwo Naukowo Techniczne, Warszawa, 1996.
  • [241] M.V. Papadrakakis, Papadopoulos and N.D. Lagaros, Reliability analysis of elastic-plastic structures using neural networks, Computational Plasticity: Fundamentals and applications, Proc. of COMPLASIV, Pineridge Press, 213-224 (1995).
  • [242] D.R. Parisi, M. Mariani, M. Laborde, Solving diffrerential equations with unsupe-rvised neural networks, Chemical Engineering and Processing 100, 1-7, 2003.
  • [243] P.R. Patnaik, A simulation study of dynamic neural filtering and control of fed-batch bioreactor under nonideal conditions, Chemical Engineering journal 84, 533-541,2000.
  • [244] D. Penumadu, R. Zhao, Triaxial compression behaviour of sand and gravel using artificial neural networks (ANN), Computers and Geotechnics, 24, 207-230, 1999.
  • [245] J.S. Perantonis and V. Virvilis, Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component Analysis, Neural Processing Letters 10: 243-252, 1999.
  • [246] P. Peretto, An Introduction to the Modelling of Neural Networks, Cambridge University Press, 1992.
  • [247] S. Pernot, C.-H. Lamarque, Application of neural networks to the modelling of some constitutive laws, Neural Networks 12, 371-392, 1999.
  • [248] D.T. Pham, D. Karaboga, Training Jordan and Elman networks for system identification using genetic algorithms. Artificial Intelligence in Engineering, 13, 107-117, 1999.
  • [249] N.S. Philip, K.J. Babu, Adaptive basis function for artificial neural networks, Neurocomputing 47, 21-34, 2003.
  • [250] B. Piechler, H.A. Mang, Parameter identification for Sophisticated models by Means of Iterative Back Analyses Based on Soft Computing, Procedings of European Conference on Computational Mechanics ECCM-2001 (CD), Cracow, Poland, 2001.
  • [251] M. Pini, P. Vena, R. Contro, Parameter identification of non-linear constitutive law for the periodontal lignament allowing for tensile and shear laboratory tests, Aimeta XIII convegno ltaliano di Meccanica Computazionale (2000).
  • [252] P. Ponte Castaneda, Nonlinear composite materials: effective constitutive behaviour and microstructure evolution, in Continuum Micromechanics', P. Suquet (ed.), Springer, 291-347, 1997.
  • [253] M. Prandini, L. Bardella, Identification of a constitutive model for epoxy resins, Aimeta XIII convegno ltaliano di Meccanica Computazionale 2000.
  • [254] V.M. Preciado, D. Guinea, J. Vincente, R. Valerio, M.C. Garcia-Alegre, A. Ribeiro, CNN's designed by GA's, European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000, Barcelona, 11-14 September 2000.
  • [255] A. Prekopa, Estimation of Cause-Effect Relationship under Noise, RUTCOR Research Report 3-93, Rutgers University, New Brunswick (1993).
  • [256] Qnet'97, 32-bit Neural Network Modelling for Windows & Windows NT.
  • [257] M.Y. Rafiq, G. Bugmann, D.J. Easterbrook, Neural network design for engineering applications, Computers and Structures 79, 1541-1552, 2001.
  • [258] S. Rajeev, C.S. Krishnamoorthy, Genetic Algorithms-Based Methodologies for Design Optimization of Trusses, Journal of Structural Engineering 3, 350-358, 1997.
  • [259] L. Rawtani, J.L. Rana, A.K. Tiwari, Modelling of material behavior data in a functional form suitable for neural network representation, Computational Material Science 15,493-502, 1999.
  • [260] E.B. Reategui, J.A. Campbell, B.F. Leao, A Case-Based Model that Integrates Specific and General Knowledge in Reasoning. Applied Intelligence 7, 79-90, 1997.
  • [261] R.D. Reed, R.J. Marks, Neural Smithing - Supervised Learning in Feedforward Neural Networks, A Bradford Book, The MIT Press,Cambridge, Massachusetts, 1999. [262] M.E. Ricotti, E. Zio, Neural network approach to sensitivity and uncertainty analysis. Reliability Engineering and System Safety 64, 59-71, 1999.
  • [263] M. Romano, Equazioni costitutive differenziali per deformazioni finite dei mezzi granulari, Atti del AIMETA, Udine, 1971.
  • [264] D.W. Ruck, S.K. Rogers, and M. Kabrisky, Feature selection using a multilayer perceptron, Neural Network Comput. 2, 40-48, 1990.
  • [265] D. Rutkowska, M. Piliński, L. Rutkowski, Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, 1999.
  • [266] S.S. Sablani, W.H. Shayya, Neural network-based non-iterative calculation of the friction factor for power law fluids, Journal of food engineering 57, 327-335, 2003.
  • [267] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer V.Berlin, 1980.
  • [268] I.W. Sandberg, Approximation for nonlinear functionals, IEEE Trans. Circuits Syst. vol. 39, no 1,65-667, 1991.
  • [269] G. Sankarasubramanian, S. Rajasekaran, Constitutive model of concrete using a new failure criterion, Computers and Structures 58, 1003-1014, 1996.
  • [270] P.M. Sargent, D.O. Ige, N.R. Ball, „Design of Laminate Composite Layups using Genetic Algorithms", Engineering with Computers, 11, 59-69, 1995.
  • [271 ] B.A. Schrefler, M. Lefik, Advanced finite element model for 3D analysis of composite beams. Metodos Numericos en Ingenieria. Navarrina Casteleiro (eds) Il Congreso de Metodos Numericos en Ingenieria, SPAIN SEMNI Vol. 1, 41-50 1993.
  • [272] B.A. Schrefler, U. Galvanetto, M. Lefik, Anisotropic elasto-plastic and stic-slip effective behaviour of periodic composite materials. Proc. of Int. Confon Composite Science and Technology, Durban, June 1996. pp.457-462, 1996.
  • [273] B.A. Schrefler, U. Galvanetto, M. Lefik, Homogenised Constitutive Relations for Elastoplastic Composite Materials. Proc. of Third Asian-Pacific Conf. on Computational Mechanics, Seoul 1996. Seoul, Korea. 1549-1554 (1996).
  • [274] B.A. Schrefler, M. Lefik, FE Application of homogenization theory to thermoelastic analysis of composite superconducting coils for nuclear fusion device. Num. Methods in Thermal Problems. R.W. Lewis, P. Durbetaki (eds.) Pineridge Press, Swansea Vol. IX Part 2, 1183-1194, 1995.
  • [275] B.A. Schrefler, M. Lefik, U. Galvanetto, Correctors in a beam model for unidirectional composites. Mechanics of Composite Materials and Structures. Vol.4 No. 2, 159-190, 1997.
  • [276] B.A. Schrefler, M. Lefik, U. Galvanetto, Linear and non-linear behaviour of composite materials with periodic structure. Proceedings (CD) of IV World Congress on Computational Mechanics. Buenos Aires 1998.
  • [277] B.A. Schrefler, M. Lefik, U. Galvanetto, Linear and non-linear behaviour of composite materials with periodic structure. In Computational Mechanics – New Trends and Applications. S. Idelsohn, E. Onate, Dvorkin (eds.) CIMNE Barcelona, Spain 1998.
  • [278] B.A. Schrefler, M. Lefik, Use of homogenization method to build elements which capture microscale properties. Proc. of VEPMESC, Macau Vol. 1 177-188, 1995
  • [279] B.A. Schrefler, M. Lefik, Use of homogenization method to build a beam element which capture thermo - elastic microscale properties. Structural Engineering and Mechanics. Vol. 4 Nr 6, 613-630, 1996.
  • [280] H.S. Shin G.N. Pande, On self-learning finite element codes based on monitored response of structues, Computers and Geotechnics 27, 161-178, (2000).
  • [281] H.S. Shin, G.N. Pande, Intelligent Finite Elements, Computational Mechanics-New Frontiers for New Millenium, S. Valliapan and N. Khalili (eds.), Elsevier 2001, 1301-1309.
  • [282] D.E. Sidarta, J. Ghaboussi, Constitutive Modeling of Geomaterials from Nonuniform Material Tests, Computers and Geotechnics, Vol.22 No.l, 53-71, 1998.
  • [283] Z. Sikora, R. Ossowski, Y. Ichikawa, K. Tkacz, Neural networks as a tool for constitutive modelling, Localization and Bifurcation Theory for Soils and Rocks, F. Oka and A. Yashima (Eds.), Balkema, Rotterdam, 1998, 173-180.
  • [284] M. Sirat, C.J. Talbot, Application of artificial neural networks to fracture analysis at the ASPO HRL, Sweden: fracture sets classification. International Journal of Rock Mechanics and Mining Sciences 38, 621-639, 2001.
  • [285] A. Slavova, P. Zecca, CNN model for studying dynamics and travelling wave solutions of FitzHugh-Nagumo equation, Journal of Computational and Applied Mathematics 151, 13-24, 2003.
  • [286] T. Soderstrom P. Stoica, Identyfikacja Systemów, Wydawnictwo Naukowe PWN, Warszawa 1997.
  • [287] D. Stein, A., Cubic approximation neural network for multivariate functions. Neural Networks 11, 235-248, 1998.
  • [288] D. Sun, Q. Hu, H. Xu, A neurocomputing model for the elastoplasticity, Comput. Methods Appl. Mech. Engrg. 182, 177-186, 2000.
  • [289] M. Sunar, A.M. A. Gurain, M. Mohandes, Substructural neural network controller. Computer and Structures 78, 575-581, 2000.
  • [290] P.M. Suquet, Elements of homogenisation for inelastic solid mechanics, in Lecture Notes in Physics 272, Springer Verlag, (1985).
  • [291] P.M. Suquet, Effective properties of nonlinear composites, in Continuum Micromechanics, P. Suquet (ed.), Springer, 291-347, 1997
  • [292] Z.P. Szewczyk, P. Hajela, Neurocomputing strategies in structural design decomposition based optimization, Structural Optimization, 8, 242-250, 1994.
  • [293] R. Tadeusiewicz, Sieci Neuronowe, Akademicka Oficyna Wydawnicza, 1993.
  • [294] C. Tamagnini, G. Viggiani, R. Chambon, J. Desrues, Evaluation of different strategies for integration of hypo-plastic constitutive equations: Application to CLoE model. Mechanics of Cohesive-Frictional Materials 5, 263-289, 2000.
  • [295] A. Tani, H. Kawamura, S. Ryu, Intelligent fuzzy optimal control of building structures. Engineering structures Vol 20 No. 3, 184-192, 1998.
  • [296] D.W. Tank and J.J. Hopfield, Simple Neural Optimization Networks: An A/D Converter, Signal Decision Circuit and Linear Programming Circuit, IEEE Trans. Circuits Syst. Vol. CAS-33, 533-541, 1986.
  • [297] A. Tashakori, H. Adeli, Optimum design of cold-formed steel space structures using neural dynamics model, Journal of Constructional Steel research 58, 1545-1566,2002.
  • [298] K. Terada, N. Kikuchi, A class of general algorithms for multi scale analyses of heterogeneous media. Comput. Meth. Appl. Mech. Engrg. 190, 5427-5464, 2001.
  • [299] I.V. Tetko, E.P. Villa, an Enhancement of Generalization Ability in Cascade Correlation Algorithm by Avoidance of Overfitting/Overtraining Problem. Neural Processing Letters, 6, 43-50, 1997.
  • [300] Leephakpreeda Thananchai, Novel determination of differential-equation solutions: universal approximation method, Journal of computational and Applied Mathematics (in print 2003).
  • [301] S.P. Theocaris, P.D. Panagiotopulos, Generalised hardening plasticity approximated via anisotropic elasticity: A neural network approach, Comput. Methods Appl. Mech. Engrg. 125, 123-139, 1995.
  • [302] P.S. Theoracis and P.D. Panagiotopoulos, Neural networks for computing in fracture mechanics: Methods and prospects of applications, Comp. Meth. Appl. Mech. Eng. 106, 213-228, 1993.
  • [303] P. Thomas, D. Lefebvre, Fault detection and isolation in non-linear systems by using oversized neural networks, Mathematic and Computer in Simulation 60, 181-192,2002
  • [304] A Tiago, P. Lopes and O.P. de Andrade, A Neural Network Approach for the Evaluation of Modal Sensitivity Matrices, Computational Mechanics, New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin (eds.), CIMNE, Barcelona, 1998.
  • [305] M. Toparli, S. Sahin, S. Ozkaya, S. Sasaki, Residual thermal stress analysis in cylindrical steel bars using finite element method and artificial neural networks, Computer and Structures 80, 1763-1770, 2002.
  • [306] B.H.V. Topping, J. Sziveri, A. Bahreinejad, J.P.B. Leite, B. Cheng, Parallel processing, neural networks and genetic algorithms. Advances in Engineering Software Vol.29, No. 10, 763-786, 1998.
  • [307] D. Tran-Canh, T. Tran-Cong, BEM-NN computation of generalised Newtonian flows, Engineering Analysis with Boundary Elements 26, 15-28, 2002.
  • [308] C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, Handbuch der Physik III, Springer, 1965.
  • [309] G. Turk, J. Logar, B. Majes, Modelling soil behaviour in uniaxial strain conditions by neural networks, Advances in Engineering Software 32, 805-812, 2001.
  • [310] S. Vallerand, X. Maldague, Deffect characterization in pulse thermography: a statistical method compared with Kohonen and Perceptron neural networks. NDT&E International 33, 307-315, 2000.
  • [311] M.T. Valoor, K. Chandrashekhara, S. Agarwal, Self-adaptive vibration control of smart composite beams using recurrent neural architecture. International journal of Solids and Structures 38, 7857-7874, 2001.
  • [312] M.N. Vrahatis, G.D. Magoulas, V.P. Plagianokos, From linear to nonlinear iterative methods, Applied Numerical Mathematics (in print 2003).
  • [313] W.-J. Wang, Y.-F. Liao, S.-H. Chen, RNN-based prosodie modeling for mandarin speech and its application to speech-to-text conversion. Speech Communication 36, 247-265, 2002.
  • [314] J.-Z. Wang, H.-G. Ni, J.-Y. He, The application of automatic acquisition of knowledge to mix design of concrete, Cement and Concrete Research 29, 1875-1880, 1999.
  • [315] Z. Waszczyszyn, M. Bartczak, Neural prediction of buckling loads of cylindrical shell with geometrical imperfections, International Journal of Non-Linear Mechanics 37, 763-775, 2002.
  • [316] Z. Waszczyszyn, Ziemiański L., Neural network in mechanics of structures and materials - new results and prospects of applications, Computer and Structures, 79,2261-2267,2001.
  • [317] Z. Waszczyszyn, Neural networks in plasticity: some new results and prospects of applications, Proc. (CD) of European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000, Barcelona, 11-14 September 2000.
  • [318] Z. Waszczyszyn, Some New Results in Applications of Backpropagation Neural Networks in Structural and Civil Engineering, Advances in Engineering Computational Technology, Edinburgh, Civil-Comp. Press, 173-187, 1998.
  • [319] M. Weigl, W. Kosiński, Fuzzy inference network and modified back-propagation network in approximation problems.
  • [320] S. Whitaker, Simultaneous Heat Mass and Momentum Transfer in Porous Media: A Theory of Drying, Advances in Heat Transfer, No. 13, Academic Press, New York, 1977.
  • [321] A. Wieland and R. Leighten, Geometric analysis of neural networks capacity, Proc. IEEE first CAW 1, 385-392, 1987.
  • [322] J.R. Willis, Dynamics of composites, in Continuum Micromechanics, P. Suquet (ed.), Springer, 291-347, 1997.
  • [323] S.W. Wilson, Classifiers that approximate functions, Natural Computing, 1,211-233, 2002.
  • [324] K. Worden, A.P. Burrows, optimal sensor placement for fault detection, Engineering Structures 23, 885-901, 2001.
  • [325] Cz. Wozniak, Z., Baczyński, M.,Wozniak, Modelling of Nonstationary Heat Conduction Problems in Micro-periodic Composites, ZAMMZ. angew. Math. Mech. 76/4, 223-229, 1996.
  • [326] Cz. Wozniak, Refined macrodynamics of periodic structures, Arch.Mech. 45/3, 295-304, 1993.
  • [327] P. Wriggers, S. Lohnert, Virtual Testing of Composite Materials, WCCM V, Vienna, Austria.
  • [328] R.C. Wu, Neural network models: Foundations and applicatios to an audit decision problem. Annals of Operational Research 75, 291-301, 1997.
  • [329] Miejsce WWW: Neural Networks -prediction, classification and forecasting in Microsoft Excel: www.MeuroXL.com.
  • [330] Y. Xiang, S.K. Tso, Detection and classification of flaws in concrete structure using bispectra and neural networks, NDT&E International 35, 19-27, 2002.
  • [331] Y.G. Xu, G.R. Liu, X.M. Wu, X.M. Huang, Adaptive multilayer perceptron networks for detection of crack in anisotropic laminated plates. International Journal of solid and Structures 38, 5625-5645, 2001.
  • [332] F. Y. Cheng, L. Dan, Multiobjective Optimization Design with Pareto Genetic Algorithm, Journal of Structural Engineering 123, 1252-1261, 1997.
  • [333] G. Yagawa, H. Okuda, Finite Element Solutions with Feedback Network Mechanism Through Direct Minimization of Energy Functionals, International Journal for Numerical Methods in Engineering Vol. 39, 867-883, 1996.
  • [334] G. Yagawa, H. Okuda, Neural Networks in Computational Mechanics, Archives of Computational Methods in Engineering Vol 3/4, 435-512, 1996.
  • [335] S. Yoshimura, S. Hishida, H, Yagawa, G. Parameter optimisation of viscoplastic constitutive equations using neural networks, ASMEIWV 1997; 274:141-145.
  • [336] X.-H. You, G.-A. Chen, Efficient Backpropagation Learning Using Optimal Learning rate and Momentum. Neural Networks Vol. 10 No.3, 517-527, 1997.
  • [337] L. Younes, Synchronous Boltzman Machine Can Be Universal Approximator, Appl. Math. Lett., Vol. 9, No3, 109-113, 1996.
  • [338] C.-B. Yun, Y.E. Bahng, Substructural identification using neural networks. Computer and Structure 11, 41-52, 2000.
  • [339] C.-B. Yun, J.-H. Yi, Y.E. Bahng, Joint damage assessment of framed structures using a neural networks technique. Engineering Structures 23, 425-435, 2001.
  • [340] A. Zaoui, Structural Morphology and constitutive behaviour of heterogeneous materials, in Continuum Micromechanics, P. Suquet (ed.), Springer, 291-347, 1997.
  • [341] A. Zell et AL, SNNS, Stuttgart Neural Network Simulator User Manual V.4.2, University of Stuttgart, University of Tubingen.
  • [342] L. Zhang, G. Subbarayan, An evaluation of back-propagation neural networks for the optimal design of structural systems: Part II, Numereical evaluation, Comput. Methods Appl. Mech. Engrg. 191, 2887-2904, 2002.
  • [343] L. Zhang., G. Subbarayan, An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I, Training procedures, Comput. Methods Appl. Mech. Engrg. (In print 2002).
  • [344] Y. Zhou and X. Wu, Use of Neural Networks in the Analysis and Interpretation of Site Investigation Data. Computers and Geotechnics, 16, 105-122, 1994.
  • [345] D. Zhou, J. Cao, Globally exponential stability conditions for cellular neural networks with time-varying delays, Applied Mathematics and Computations 131, 487-496, 2003.
  • [346] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 4th Edition, Vol. 1, Basic Formulation and Linear Problems, McGraw-Hill Book Company, London, 1989.
  • [347] A. Zubaydi, M.R. Haddara, A.S.J. Swamidas, Damage identification in a ship's structure using neural networks. Ocean Engineering, (in print, 2003).
  • [348] S.H. Żak, V. Upatising, S. Hui, Solving Linear Programming problem with Neural Networks: A Comparative Study, IEEE Transactions on Neural Networks, Vol.6, 1-13, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0016-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.