PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silnie wiążące analogi stanów przejściowych fosforylaz nukleozydów purynowych - analiza oddziaływań w centrum aktywnym, projektowanie i właściwości

Autorzy
Identyfikatory
Warianty tytułu
EN
Tight binding transition state analogues of purine nucleoside phosphorylase - studies on interactions in active site cavity, design and properties
Języki publikacji
PL
Abstrakty
PL
Inhibicja fosforylazy nukleozydów purynowych stanowi potencjalną drogę do leczenia immunosupresyjnego i przeciwnowotworowego, jak również rozważa się ją jako środek przeciwko malarii, tj. choroby o wzrastającej lekooporności na dotychczasowe schematy leczenia. W pracy przedstawiono analizy oddziaływań w centrum aktywnym izoenzymów fosforylazy nukleozydów purynowych z różnych organizmów dla kompleksów z wieloma analogami stanu przejściowego, opartymi na pierścieniu imminorybitolu, tj. immucilliny H. Pozwoliło to określić zależność powinowactwa od poszczególnych modyfikacji strukturalnych. Przeprowadzone badania nad kinetycznymi efektami izotopowymi, doprowadziły do opracowania struktur stanów przejściowych ludzkiego i zarodźcowego izoenzymu fosforylazy nukleozydów purynowych wskazujących, że silnie wiążący inhibitor powinien mieć charakter późnego stanu przejściowego o cechach jonu oksakarbeniowego. Analiza właściwości kinetycznych i termodynamicznych przedstawionych analogów stanu przejściowego wykazała, że związkiem najlepiej naśladującym cechy stanu przejściowego fosforylazy nukleozydów purynowych jest DADMe-Immucillina H, określona w pracy jako „ponadbarierowy analog stanu przejściowego", ze względu na cechy przypominające stronę produktu na współrzędnej reakcji. Badania spektroskopowe IR/Ramana pokazały, że siła wiązania silnie wiążących analogów stanu przejściowego jest również wynikiem oddziaływania analogu z jonem fosforanowym w centrum aktywnym, gdzie silne oddziaływanie elektrostatyczne prowadzi do deformacji geometrii fosforanu. Analiza kinetyki wskazała na dwufazowy proces wiązania analogu stanu przejściowego, związany ze zmianami konformacji wskutek zmiany stanu protonacyjnego, co zobrazowane zostało badaniami nad izoenzymem z M. Tuberculosis, wykazującymi powolne ustalanie się inhibicji. DADMe-Immucillina H i DADMe-Immucillina G, silnie wiążące analogi oparte na modyfikacji DADMe poprawiającej właściwości immucilliny H, charakteryzują się pikomolowymi stałymi dysocjacji względem ludzkiego izoenzymu jak i fosforylazy z M. tuberculosis. Choć DADMe-Immucillina H, zgodnie z przewidywaniami na podstawie analizy parametrów kinetycznych, wiąże się znacznie słabiej z izoenzymem zarodźcowym, analiza struktury jego centrum aktywnego, pozwoliła znaleźć selektywny inhibitor preferujący bardziej zarodźcową niż ludzką fosforylazę nukleozydów purynowych, 5'-metylotio-immucillinę H i jest to jedyny taki analog obecnie znany. Przeprowadzone badania kinetyczne wykazały również postulowaną tutaj, nowoodkrytą dwufunkcyjność izoenzymu fosforylazy nukleozydów purynowych z zarodźca malarii, przejawiającego aktywność względem inozyny, jak i 5'-metylotioinozyny, przez co zapewnione jest zarówno dostarczanie puryn dla pasożyta, jak i wtórny metabolizm 5'-metylotionukleozydów ze szlaku poliamin, a blokowanie fosforylazy może prowadzić do śmierci zarodźca malarii na drodze dwóch mechanizmów. Przeprowadzone badania in vivo na myszach wykazały doskonałą biodostępność DADMe-Immucilliny H po podaniu doustnym, w tym przenikalność przez błonę erytrocytarną, oraz znaczne, blisko 3-krotne wydłużenie czasu inhibicji w stosunku do poprzednio badanej immucilliny H. Dane te sugerują, że DADMe-Immucillina H może stanowić lepszą alternatywę dla immucilliny H będącej obecnie w fazie prób klinicznych z udziałem pacjentów z rozrostami T-komórkowymi.
EN
The inhibition of purine nucleoside phosphorylase is considered as a potential way for immunosupressive and anticancer treatment, as well as potential remedy against malaria, the disease demonstrating increasing drug resistance. Analysis of interactions in active site cavity of purine nucleoside phosphorylase from different organisms with complexes of transition state analogues was performed. It has enabled to establish structure-inhibition potential relationship. Kinetic isotope effects analysis performed for human and Plasmodium falciparum isoenzymes helped to find the structures of transition states for both isoenzymes. This analysis has shown that tight binding transition state analogue should be characterized by late transition state with oxacarbenium ion character. Kinetic and thermodynamic properties of tested transition state analogues pointed out that the DADMe-Immucillin H is the most accurate mimic of transition state. The compound is described as "the over the barrier transition state analogue" due to positioning transition state from the side of product on the reaction pathway. The binding of transition state analogues has significant contribution from strong interactions with dianionic phosphate present in active site cavity, what was proven by unusual phosphate geometry distortion shown by IR/Raman analysis. The data, together with molecular electrostatic potential analysis suggested that enzyme-TS analogue complex involves protonated form of inhibitor. The binding is a two phases process with conformational changes and the inhibition slow onset was demonstrated by kinetic analysis on purine nucleoside phosphorylase from M. tuberculosis. DADMe-Immucillin H and DADMe-Immucillin G, tight binding transition state analogues based on a new DADMe modification improving immucillin H properties have shown picomolar dissociation constants against human, as well as M. tuberculosis purine nucleoside phosphorylase. Although DADMe-Immucillin H, according to catalytic parameters analysis binds less tightly, the active cavity analysis helped to design a selective inhibitor, 5'-methylthio-immucillin H preferring malarial rather than human isoenzyme, and this is the only one known such a compound. Double specificity of malarial isoenzyme against inosine as well as 5'-methylthioinosine was also postulated on the basis of kinetic data analysis. It maintains purine salvage and 5'-methylthionucleosides recycling from polyamine pathway for parasite, as well provides that the parasite death may be induced more effectively by blocking two metabolic pathways. In vivo studies on mice shown excellent DADMe-Immucillin H bioavability after oral administration, permeability through erythrocyte membrane and significant, almost triple elongation of inhibition time in comparison to previously studied immucillin H. The data are suggesting that DADMe-Immucillin H may become a better alternative for immucillin H being presently in the phase of clinical trials on patients with malignant T-derived proliferative diseases.
Rocznik
Tom
Strony
3--81
Opis fizyczny
Bibliogr. 113 poz.
Twórcy
  • Międzynarodowy Instytut Biologii Molekularnej i Komórkowej w Warszawie
Bibliografia
  • 1. Murray R K, Granner D K, Mayes P A, Rodwell VW, (2000) Harper's Biochemistry, 25th Ed., McGraw-Hill Companies, Inc. New York. str. 1015-1016 i 717.
  • 2. Wallace, H M, Fraser, A V, Hughes A (2003) A perspective of polyamine metabolism, Biochem J 376:1-14.
  • 3. Ealick, S E, Rule S A, Carter D C, Greenhough T J, Babu Y S, Cook W J, Habash J, Helliwell J R, Stoeckler J D, Parks R E (1990) Three-dimensional structure of human erythrocytic purine nucleoside Phosphorylase at 3.2 A resolution, J Biol Chem 265:1812-1820.
  • 4. Ealick S E, Babu Y S, Bugg C E, Erion M D, Guida W C, Montgomery J A, Secrist J A (1991) Application of crystallographic and modeling methods in the design of purine nucleoside Phosphorylase inhibitors, Proc Natl Acad Sei USA 88:11540-11544.
  • 5. Montgomery J A, Niwas S, Rose J D, Secrist J A, Babu Y S, Bugg C E, Erion M D, Guida W C, Ealick S E (1993) Structure-based design of inhibitors of purine nucleoside Phosphorylase. l,9-(arylmethyl) derivatives of 9-deazaguanine, J Med Chem 36:55-69.
  • 6. Duvic M, Olsen E A, Omura G A, Maize J C, Vonderheid E C, Elmets C A, Shupack J L, Demierre M F, Kuzel T M, Sanders D Y (2001) A phase HI, randomized, double-blind, placebo-controlled study of peldesine (BCX-34) cream as topical therapy for cutaneous T-cell lymphoma, J Am Acad Dermatol 44:940-947.
  • 7. Morris P E, Montgomery J A (1998) Exp Opin Ther Patents 8:283-299.
  • 8. Wolfenden R (1999) Conformational aspects of inhibitor design: enzyme-substrate interactions in the transition state, Bioorg Med Chem 7:647-652.
  • 9. Wolfenden R, Kati W M (1991) Testing the limits of protein-ligand binding discrimination with transition-state analogue inhibitors, Ace Chem Res 24:209-215.
  • 10. Schramm V L (1998) Enzymatic transition states and transition state analog design, Annu Rev Biochem 67:693-720.
  • 11. Schramm V L (1999) Enzymatic transition-state analysis and transition-state analogs. Methods Enzymol 308: 301-355.
  • 12. Schramm V L (2001) Transition state variation in enzymatic reactions, Curr Opin Chem Biol 5: 556-563.
  • 13. Schramm V L (2003) Enzymatic transition state poise and transition state analogues, Ace Chem Res 36:588-596.
  • 14. Bigeleisen J, Mayer M G (1947) Calculation of equilibrium constants for isotopic exchange reactions, / Chem Phys 15:261.
  • 15. Melander L, Saunders W H (1980) Reaction Rates of Isotopic Molecules, Wiley and Sons, New York.
  • 16. Cook P F (1991) Enzyme Mechanism from Isotope Effects, CRC Press, str. 4.
  • 17. Smith L E H, Mohr L H, Raftery, M A (1973) Mechanisms for lysozyme-catalyzed hydrolysis, J Am Chem Soc 95:7497.
  • 18. Rodgers J, Femec D A, Schowen R L (1982) Isotopic mapping of transition-state structural features associated with enzymatic catalysis of methyl transfer, J Am Chem Soc 104:3263.
  • 19. Horenstein B A, Parkin D W, Estupinan B, Schramm V L (1991) Transition-state analysis of nucleoside hydrolase from Crithidia fasciculate, Biochemistry 30:10788-10795.
  • 20. Kline P C, Schramm V L (1993) Purine nucleoside Phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction, Biochemistry 32:13212-13219.
  • 21. Berti P J (1999) Determining transition states from kinetic isotope effects, Methods Enzymol 308:355-397.
  • 22. Glad S S, Jensen F (1997) Transition state looseness and,-secondary kinetic isotope effects, J Am Chem Soc 119:227-232.
  • 23. Pham T V, Fang Y R, Westaway K C (1997) Using secondary deuterium kinetic isotope effects to determine the symmetry of SN2 transition states, J Am Chem Soc 119:3670-3676.
  • 24. Sicinska D, Truhlar, D G, Paneth P (2001) Solvent-dependent transition states for decarboxylations, J Am Chem Soc 123:7683-7686.
  • 25. Fang Y R, Gao Y, Ryberg P, Eriksson J, Kołodziejska-Huben M, Dybala-Defratyka A, Madhavan S, Danielsson R, Paneth P, Matsson O, Westaway KC (2003) Experimental and theoretical multiple kinetic isotope effects for an SN2 reaction. An attempt to determine transition-state structure and the ability of theoretical methods to predict experimental kinetic isotope effects, Chemistry 9:2696-709.
  • 26. Chen X Y, Berti P J, Schramm V L (2000) Transition state analysis for depurination of DNA by ricin A-chain, J Am Chem Soc 122:6527-6534.
  • 27. Chen X Y, Berti P J, Schramm V L (2000) Ricin A-chain: Kinetic isotope effects and transition state structure with stem-loop RNA, J Am Chem Soc 122:1609-1617.
  • 28. Berti P J, Tanaka K S E (2002) Transition state analysis using multiple kinetic isotope effects: mechanism of enzymatic and non-enzymatic glycoside hydrolysis and transfer, Advances Phys Org Chem 37:239-314.
  • 29. Parikh S L, Schramm V L (2004) Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin, Biochemistry 43:1204-1212.
  • 30. Lewandowicz A, Schramm V L (2004) Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases, Biochemistry 43:1458-1468.
  • 31. Kline P C, Schramm V L (1995) Pre-Steady-State Transition-State Analysis of the Hydrolytic Reaction Catalyzed by Purine Nucleoside Phosphorylase, Biochemistry 34:1153-1162.
  • 32. Kline P C, Schramm V L (1993) Purine Nucleoside Phosphorylase. Catalytic Mechanism and Transition-State Analysis of the Arsenolysis Reaction, Biochemistry 32:13212-13219.
  • 33. Miles R W, Tyler P C, Fumeaux R H, Bagdassarian C K, Schramm V L (1998) One-third-the-sites transition state inhibitors for purine nucleoside Phosphorylase, Biochemistry 37:8615-8621.
  • 34. Birck M R, Schramm V L (2004) Nucleophilic participation in the transition state for human thymidine Phosphorylase, J Am Chem Soc 126: 2447-2453.
  • 35. Lewandowicz A, Shi W, Evans G B, Tyler P C, Fumeaux R H, Basso L A, Santos D S, Almo S C, Schramm V L (2003) Over-the-Barrier Transition State Analogues and Crystal Structure with Mycobacterium tuberculosis Purine Nucleoside Phosphorylase, Biochemistry 42: 6057-6066.
  • 36. Kieska G A, Tyler P C, Evans G B, Fumeaux R H, Shi W, Fedorov A, Lewandowicz A, Cahill S M, Almo S C, Schramm V L (2002) Atomie dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside Phosphorylase, Biochemistry 41:14489-14498.
  • 37. Singh V, Shi W, Evans G B, Tyler P C, Fumeaux R H, Almo S C, Schramm V L (2004) Picomolar Transition State Analogue Inhibitors of Human 5'-Methylthioadenosine Phosphorylase and X-ray Structure with MT-Immucillin A, Biochemistry 43: 9-18.
  • 38. Schramm V L, Shi W (2001) Atomie motion in enzymatic reaction coordinates, Curr Opin Struct Biol 11:657-665.
  • 39. Kalckar H M (1947). Differential spectrophotometry of purine compounds by means of specific enzymes: I. Determination of hydroxypurines, J Biol Chem 167:429-443.
  • 40. Kalckar H M (1947). The enzymatic synthesis of purine ribosides, J Biol Chem 167: 477-486.
  • 41. Friedkin M, Kalckar H (1961). Nucleoside phosphorylases. Enzymes 5:237-256.
  • 42. Pugmire M J, Ealick S E (2002) Structural analyses reveal two distinct families of nucleoside phosphorylases, Biochem J 361:1-25.
  • 43. Bzowska A, Kulikowska E, Shugara D (2000) Purine nucleoside phosphorylases: properties, functions, and clinical aspects, Pharmacology & Therapeutics 88:349-425.
  • 44. Bzowska A (2002) Calf spleen purine nucleoside Phosphorylase: complex kinetic mechanism, hydrolysis of 7-methylguanosine, and oligomeric state in solution, Biochim Biophys Acta 1596:293-317.
  • 45. Ray A S, Olson L, Fridland A (2004) Role of purine nucleoside Phosphorylase in interactions between 2',3'-dideoxyinosine and allopurinol, ganciclovir, or tenofovir, Antimicrob Agents Chemother 48:1089-1095
  • 46. Koellner G, Bzowska A, Wielgus-Kutrowska B, Luic M, Steiner T, Saenger W, Stępiński J. (2002) Open and Closed Conformation of the E. coli Purine Nucleoside Phosphorylase Active Center and Implications for the Catalytic Mechanism, J Mol Biol 315:351-371.
  • 47. Kredich N M, Hershfield M S Stanbury J B, Wyngaarden J B, Fredrickson D S, (1989) Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleosides Phosphorylase deficiency, The Metabolic Basis of Inherited Disease, 6th edition New York, McGraw-Hill str. 1045-1075.
  • 48. Markert M L (1991) Purine nucleoside Phosphorylase deficiency, Immunodefic Rev 3:45-81.
  • 49. Giblett E R, Ammann A J, Wara D W, Sandman R, Diamond L K (1975) Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity, Lancet 1:1010— 1013.
  • 50. Chan T S (1978) Deoxyguanosine toxicity on lymphoid cells as a cause for immunosuppression in purine nucleoside Phosphorylase deficiency, Cell 14:523-530.
  • 51. Cohen A, Gudas L J, Ammann A J, Staal G E J Martin D E (1978) J Clin Invest 61:1405-1409.
  • 52. Cohen A, Doyle D, Martin D W, Ammann A J. (1976) Abnormal purine metabolism and purine overproduction in a patient deficient of purine nucleoside Phosphorylase, N Engl J Med 295:1449-54.
  • 53. Siegenbeek van Heukelom LK, Staal G E J, Stoop J W, Zegers B J M. (1976) An abnormal form of a purine nucleoside Phosphorylase in a family with a child with severe defective T-cell and normal B-cell immunity, Clin Chim Acta 72:117-124.
  • 54. Datta, N S, Shewach D S, Mitchell B S, Fox I H (1989) Kinetic properties and inhibition of human T lymphoblast deoxycytidine kinase, J Biol Chem 264:9359-9364.
  • 55. Mansson E, Flordal E, Lilemark J, Spasokoukotskaja T, Elford H, Lagercrantz S, Eriksson S, Albertioni F (2003) Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance, Biochem Pharmacol 65:237-247.
  • 56. Osborne W R (1980) Human red cell purine nucleoside Phosphorylase. Purification by biospecific affinity chromatography and physical properties, J. Biol Chem 255:7089-7092.
  • 57. Ullman B, Clift, S M, Gudas L J, Levinson B B, Wormsted M A, Martin D E, (1980) Alterations in deoxyribonucleotide metabolism in cultured cells with ribonucleotide reductase activities refractory to feedback inhibition by 2'-deoxyadenosine triphosphate, J Biol Chem 255:8308-8314.
  • 58. Bantia S, Ananth S L, Parker C D, Horn L L, Upshaw R (2003) Mechanism of inhibition of T-acute lymphoblastic leukemia cells by PNP inhibitor—BCX-1777, Int. Immunopharmacol. 3:879-887.
  • 59. Schramm V L (2002) Development of transition state analogues of purine nucleoside Phosphorylase as anti-T-cell agents, Biochim Biophys Acta 1587:107- 117.
  • 60. Bantia S, Miller P J, Parker C D, Ananth S L, Horn L L, Kilpatrick J M, Morris P E, Hutchison T L, Montgomery J A, Sandhu J S (2001) Purine nucleoside Phosphorylase inhibitor BCX-1777 (Immucillin-H) — a novel potent and orally active immunosuppressive agent, Int. Immunopharmacol 1:1199-1210.
  • 61. Sircar J C, Gilbertsen R B (1988) Purine nucleoside Phosphorylase. PNP inhibitors: potentially selective immunosuppressive agents, Drugs Future 13:653-668.
  • 62. Kazmers I S, Mitchell B S, DaDonna P E, Wotring I I, Townsend L B, Kelly W N (1981) Inhibition of purine nucleoside Phosphorylase by 8-aminoguanosine: selective toxicity for T-lymphocytes, Science 214:1137-1139.
  • 63. Kieska G A, Long L, Horig H, Fairchild C, Tyler P C, Furneaux R H, Schramm V L, Kaufman H L (2001) Immucillin H, a powerful transition-state analog inhibitor of purine nucleoside Phosphorylase, selectively inhibits human T lymphocytes, Proc Natl Acad Sei USA 98:4593-4598.
  • 64. Banti S, Miller P J, Parker C D, Ananth S L, Horn L L, Babu Y S, Sadhu J S (2002) Comparison of in vivo efficacy of BCX-1777 and cyclosporin in xenogeneic graft-vs.-host disease: the role of dGTP in antiproliferative action of BCX-1777, Int. Immunopharmacol. 2:913-923.
  • 65. Snow R W, Craig M H, Dieichmann U, Marsh K (1999) Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population, Bull. W. H. O. 77:624-640.
  • 66. Snow R W, Craig M H, Deichmann U, le Sueur D (1999) A preliminary continental risk map for malaria mortality among African children, Parasitol Today 15:99-104.
  • 67. Krudsood S, Buchachart K, Chalermrut K, Charusabha C, Treeprasertsuk S, Haoharn O, Duangdee C, Looareesuwan S (2002) A comparative clinical trial of combinations of dihydroartemisinin plus azithromycin and dihydroartemisinin plus mefloquine for treatment of multidrug resistant falciparum malaria, Southeast Asian J Trop Med Public Health 33:525-531.
  • 68. Winstanley P A, Ward S A, Snow R W (2002) Clinical status and implications of antimalarial drug resistance, Microbes Infect 4:157-164.
  • 69. Sherman I W (1979) Biochemistry of Plasmodium (malarial parasites), Microbiol Rev 43:453-495.
  • 70. Subbayya I N, Ray S S, Balaram P, Balaram H (1997) Metabolic enzymes as potential drug targets in Plasmodium falciparum, Indian J Med, Res 106:79-94.
  • 71. Queen S A, Jagt D L, Reyes P (1990) In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism, Antimicrob Agents Chemother 34:1393-1398.
  • 72. Kieska G A, Tyler P C, Evans G B, Fumeaux R H, Schramm V L, Kim K (2003) Purine-less death in Plasmodium falciparum induced by Immucillin-H, a transition state analogue of purine nucleoside Phosphorylase, J Biol Chem 277:3226-3231.
  • 73. Kieska G A, Tyler P C, Evans G B, Fumeaux R H, Kim K, Schramm V L (2002) Transition state analogue inhibitors of purine nucleoside Phosphorylase from Plasmodium falciparum, J Biol Chem 277:3219-3225.
  • 74. Basso L A, Santos D S, Shi W, Fumeaux R H, Tyler P C, Schramm V L, Blanchard J S (2001) Purine nucleoside Phosphorylase from Mycobacterium tuberculosis. Analysis of inhibition by a transition-state analogue and dissection by parts, Biochemistry 40:8196-8203.
  • 75. Taylor Ringia E A, Murkin, A S, Lewandowicz A, Tyler P C, Evans G B, Fumeaux R H, Schramm V L Design of transition state analogues of purine nucleoside Phosphorylase with specificity for human, bovine, anopholes and malarial transitions states, 19th Enzyme Mechanisms Conference, Asilomar, California, 2005.
  • 76. Shi W, Ting L M, Kieska G A, Lewandowicz A, Tyler P C, Evans G B, Fumeaux R H, Kim K, Almo S C, Schramm V L (2004) Plasmodium falciparum purine nucleoside Phosphorylase: crystal structures, immucillin inhibitors and dual catalytic function, J Biol Chem 279:18103-18106.
  • 77. Mclvor R S, Goddar J M, Simones C C, Martin D W Jr. (1985) Expression of cDNA sequence encoding human purine nucleoside Phosphorylase in rodent and human cells, Mol Cell Biol 5:1349-1357.
  • 78. Parkin D W, Leung H B, Schramm V L (1984) Synthesis of nucleotides with specific radiolabels in ribose. Primary 14C and secondary 3H kinetic isotope effects on acid-catalyzed glycosidic bond hydrolysis of AMP, dAMP and inosine, J Biol Chem 259:9411-9417.
  • 79. Evans G B, Fumeaux R H, Lewandowicz A, Schramm V L, Tyler P C (2003) Exploring Structure-Activity Relationships of Transition State Analogues of Human Purine Nucleoside Phosphorylase, J Med Chem 46:3412-3423.
  • 80. Evans G B, Fumeaux R H, Gainsford G J, Hanson J C, Kieska G A, Sauve A A, Schramm V L, Tyler P C (2003) 8-Azaimmucillins as transition-state analogue inhibitors of purine nucleoside Phosphorylase and nucleoside hydrolases, J Med Chem 46:155-160.
  • 81. Evans G B, Fumeaux R H, Hutchinson T L, Kazar H S, Morris P E, Schramm V L, Tyler P C (2001) Addition of Lithiated 9-Deazapurine Derivatives to a Carbohydrate Cyclic Imine: Convergent Synthesis of the Aza-C-Nucleoside Immucillins, / Org Chem 66:5723-5730.
  • 82. Horenstein B A, Żabiński R F, Schramm V L (1993) A new class of C-nucleoside analogues. l-(S)-l,4-dideoxy~l,4-imino- D-ribitols, transition state analogue inhibitors of nucleoside hydrolase, Tetrahedron Lett 34:7213-7216.
  • 83. Evans G B, Furneaux R H, Lewandowicz A, Schramm V L, Tyler P C (2003) Synthesis of Second-Generation Transition State Analogues of Human Purine Nucleoside Phosphorylase, J Med Chem 46:5271-5276.
  • 84. Filichev V V, Brandt M, Pedersen E B (2001) Synthesis of an aza analogue of 2-deoxy-D-ribofuranose and its homologues, Carbohydrate Res 333:115-122.
  • 85. Kieska G A, Tyler P C, Evans G B, Furneaux R H, Shi W, Fedorov A, Lewandowicz A, Cahill S M, Almo S C, Schramm V L (2002) Atomie dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside Phosphorylase, Biochemistry 41:14489-14498.
  • 86. Sauve A A, Cahill S M, Zech S G, Basso L A, Lewandowicz A, Santos D S, Grubmeyer C, Evans G B, Furneaux R H, Tyler P C, McDermott A, Girvin M E, Schramm V L (2003) Ionic States of Substrates and Transition State Analogues at the Catalytic Sites of N-Ribosyltransferases, Biochemistry 42:5694-5705.
  • 87. Mildvan A S, Massiah M A, Harris T K, Marks G T., Harrison D H T, Viragh C, Reddy P M, and Kovach IM (2002) Short, strong hydrogen bonds on enzymes: NMR and mechanistic studies, J Mol Struct 615:163-175.
  • 88. Erion M D, Takabayashi K, Smith H B, Kessi J, Wagner S, Honger S, Shames S L, Ealick S E (1997) Purine nucleoside Phosphorylase. 1. Structure-function studies, Biochemistry 36:11725-11734.
  • 89. Manzumder D, Kahn K, Bruice T C (2002) Computer simulations of trypanosomal nucleoside hydrolase: determination of the protonation state of the bound transition state analogue, J Am Chem Soc 124:8825-8833.
  • 90. Cook P F, Cleland W W (1981) Mechanistic deductions from isotope effects in multireactant enzyme mechanisms, Biochemistry 20:1790-1796.
  • 91. Hermes J D, Roeske C A, O'Leary M H, Cleland W W (1982) Use of multiple isotope effects to determine enzyme mechanisms and intrinsic isotope effects. Malic enzyme and glucose-6-phosphate dehydrogenase, Biochemistry, 21:5106-5114.
  • 92. Rose I A (1980) The isotope trapping method: desorption rates of productive E.S complexes, Methods Enzymol. 64:47-59.
  • 93. Adcock W, Trout N A, Vercoe D, Taylor D K, Shiner V J, Sorensen T S (2003) Solvolysis of (Z)-5-trimethylstannyl 2-adamantyl p-bromobenzenesu]fonate: mechanistic implications of a record-breaking secondary -deuterium kinetic isotope effect for an SN1 substrate, J Org Chem 68:5399-5402.
  • 94. Poirier R A, Wang Y, Westaway K C (1994) A Theoretical study of the relationship between secondary alpha-deuterium kinetic isotope effects and the structure of SN2 transition states, J Am Chem Soc 116:2526-2533.
  • 95. Sunko D E, Szele I, Hehre W J (1977) Hyperconjugation and the angular dependence of beta-deuterium isotope effects, J Am Chem Soc 99:5000-5005.
  • 96. Swain C G, Stivers E C, Reuver J F, Schaad L J (1958) Use of hydrogen isotope effect to identify the attacking nucleophile in the enolization of ketones catalyzed by acetic acid, J Am Chem Soc 80:5885-5893.
  • 97. Horenstein B A, Parkin D W, Estupinan B, Schramm V L (1991) Transition-state analysis of nucleoside hydrolase from Crithidia fasciculate, Biochemistry 30:10788-10795.
  • 98. Kresge A J, Lichtin N N, Rao K N, Weston R E (1965) The primary carbon isotope effect on the ionization of triphenylmethyl chloride. Experimental determination, theoretical justification, and implications for carbon isotope effects on nucleophilic substitution at saturated carbon, J Am Chem Soc 87:437-445.
  • 99. Deng H, Lewandowicz A, Schramm V L, Callender R (2004) Activating the phosphate nucleophile at the catalytic site of purine nucleoside Phosphorylase: a vibrational spectroscopic study, J Am Chem Soc 126:9516-9517.
  • 100. Deng H, Wang J, Ray W J, Callender R (1998) Relationship between Bond Stretching Frequencies and Internal Bonding for [wzór] Phosphates in Aqueous Solution, J Phys Chem B 102:3617-3623.
  • 101. Wang J H, Xiao D G, Deng H, Webb M R, Callender R (1998) Raman difference studies of GDP and GTP binding to c-Harvey ras, Biochemistry 37:11106-11116.
  • 102. Kozioł A E, Lis T (1991) Acta Crystallogr Sect C, 47:2076-2079; Lis T (1991) Acta Crystallogr Sect C:47: 642-643; Lis T, Weichsel A (1992) Acta Crystallogr Sect C: 48:693-696; Lis T, Mazurek J, Okabe N (1991) Acta Crystallogr Sect C 54:559-561, Klooster W T, Craven B M (1992) Acta Crystallogr Sect C 48:19-22.
  • 103. Mao C, Cook W J, Zhou M, Koszałka G W, Krenitsky T A, Ealick S E (1997) The crystal structure of Escherichia coli purine nucleoside Phosphorylase: a comparison with the human enzyme reveals a conserved topology, Structure 5:1373-1383.
  • 104. Ting LM, Shi W, Lewandowicz A, Singh V, Mwakingwe A, Birck MR, Taylor Ringia E A, Bench G, Madrid D C, Tyler P C, Evans G B, Furneaux R H, Schramm V L, Kim K (2004) Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J Biol Chem, in press
  • 105. Shi W., Basso L A, Santos D S, Furneaux R H, Tyler P C, Blanchard J H, Almo S C Schramm V L (2001) Structures of purine nucleoside Phosphorylase from Mycobacterium tuberculosis in complexes with immucillin H and its pieces, Biochemistry 40:8204-8215.
  • 106. Morrison J F, Walsh C T (1988) The behaviour and significance of slow binding inhibitors, Adv Enzymol Relat Areas Mol Biol 61: 201-301.
  • 107. Deng H, Lewandowicz A, Schramm V L, Callender R (2004) Activating the phosphate nucleophile at the catalytic site of purine nucleoside Phosphorylase: a vibrational spectroscopic study, J Am Chem Soc 126: 9516-9517.
  • 108. Mao C, Cook W J, Zhou M, Fedorov A A, Almo S C, Ealick S E (1998) Calf spleen purine nucleoside Phosphorylase complexed with substrates and substrate analogues, Biochemistry 37:7135-7146.
  • 109. Fedorov A, Shi W, Kieska G, Fedorov E, Tyler P C, Furneaux R H, Hanson J C, Gainsford G J, Larese J Z, Schramm V L, Almo S C (2001) Transition state structure of purine nucleoside Phosphorylase and principles of atomic motion in enzymatic catalysis, Biochemistry 40:853-860.
  • 110. Lewandowicz A, Tyler P C, Evans G B, Furneaux R H, Schramm V L (2003) Achieving the ultimate goal in transition state analogues for human purine nucleoside Phosphorylase, J Biol Chem 278:31465-31468.
  • 111. Gad S C, Chengelis C P (1992) Animal Models of Toxicology, Marcel Dekker, New York, str. 168.
  • 112. Lewandowicz A, Ting L M, Shi W, Tyler P C, Evans G B, Furneaux R H, Kim K, Schramm V L (2005) Second Generation Immucillin
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0016-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.