Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present reasons for developing a theory of forcing notions which satisfy the properness demand for countable models which are not necessarily elementary sub-models of some (H(x),∈ ). This leads to forcing notions which are "reasonably" definable. We present two specific properties materializing this intuition: nep (non-elernentary properness) and snep (Souslin non-elementary properness) and also the older Souslin proper. For this we consider candidates (countable models to which the definition applies). A major theme here is "preservation by iteration", but we also show a dichotomy: if such forcing notions preserve the positiveness of the set of old reals for some naturally defined c.c.c. ideal, then they preserve the positiveness of any old positive set hence preservation by composition of two follows. Last but not least, we prove that (among such forcing notions) the only one commuting with Cohen is Cohen itself; in other words, any other such forcing notion make the set of old reals to a meager set. In the end we present some open problems in this area.
Wydawca
Czasopismo
Rocznik
Tom
Strony
169--289
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Institute of Mathematics The Hebrew University Jerusalem, 91904, Israel and Mathematics Department Rutgers University New Brunswick, NJ 08854, USA, shelah@math.huji.ac.il
Bibliografia
- [1] Beller, A., Jensen, R. B., Welch, P., Coding the Universe, London Math. Soc. Lecture Notes Ser. 47 Cambridge Univ. Press, Cambridge, 1982.
- [2] Bartoszyński, T., Judah, H., Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, Massachusetts, 1995.
- [3] Baumgartner, J. E., All א1-dense sets of reals can be isomorphic, Fund. Math. 79 (1973), 101-106.
- [4] Blass, A., Shelah, S., There may be simple Pא1- and Pא2 -points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243.
- [5] Błaszczyk, A., Shelah, S., Complete ϭ-centered Boolean Algebra not adding Cohen reals, J. Symbolic Logic (accepted), math. LO/9712285.
- [6] Farah, L, Zapletal, J., Between Maliaram’s and von Neumann’s problems, arxive math. LO/0401134.
- [7] Fremlin, D., Problem list. Circulated notes; available from http://www.essex.ac.uk/maths/staff/fremlin/measur.htm.
- [8] Gitik, M., Shelah, S,. Forcings with ideals and simple forcing notions, Israel J. Math. 68 (1989), 129-160.
- [9] Gitik, M., Shelah, S., More on simple forcing notions and forcings with ideals, Ann. Pure Appl. Logic 59 (1993), 219-238.
- [10] Gitik, M., Shelah, S., More on real-valued measurable cardinals and forcing with ideals, Israel J. Math. 124 (2001), 221-242, math. LO/9507208.
- [11] Goldstern, M., Tools for your forcing construction, in: Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6 (1993), 305-360.
- [12] Goldstern, M, Judah, H., Iteration of Souslin forcing, projective measurability and the Borel conjecture, Israel J. Math. 78 (1992), 335-362.
- [13] Ihoda, J. (Judah, H.), Shelah, S., Souslin forcing, J. Symbolic Logic, 53 (1988), 1188-1207.
- [14] Jech, T., Set Theory, Academic Press, New York, 1978.
- [15] Kellner, J., Shelah, S., Preserving preservation, preprint, arxive math. LO/040581
- [16] Rosłanowski, A., Shelah, S., Measured creatures, Israel J. Math (submitted), math. LO/0010070.
- [17] Rosłanowski, A., Shelah, S., Sheva-Sheva-Sheva: large creatures, Israel J. Math, (submitted), math. LO/0210205.
- [18] Rosłanowski, A., Shelah, S., Norms on possibilities II: more ccc ideals on 2ω, J. Appl. Anal. 3 (1997), 103-127, math. LO/9703222.
- [19] Rosłanowski, A., Shelah, S., Norms on Possibilities I: Forcing with Trees and Creatures, Mem. Amer. Math. Soc. 141(671), Amer. Math. Soc., Providence, RI, 1999. math. LO/9807172.
- [20] Rosłanowski, A., Shelah, S., Iteration of λ-complete forcing notions not collapsing λ+, Internat. J. Math. Math. Sci. 28 (2001),63-82, math. LO/9906024.
- [21] Shelah, S., Non Cohen oracle c.c.c., J. Appl. Anal, (submitted), math. LO/0303294.
- [22] Shelah, S., On nicely definable forcing notions, J. Appl. Anal. 11(1) (2005), (to appear), math. LO/0303293.
- [23] Shelah, S., Proper Forcing, Lecture Notes in Math. 940, Springer-Verlag, Berlin-New York, 1982.
- [24] Shelah, S., How special are Cohen and random forcings i.e. Boolean algebras of the family of subsets of reals modulo meagre or null, Israel J. Math. 88 (1994), 159-174, math. LO/9303208.
- [25] Shelah, S., Proper and Improper Forcing, Perspect. Math. Logic, Springer, New York, 1998.
- [26] Shelah, S., On what I do not understand (and. have something to say), Fund. Math. 166 (2000), 1-82, math. LO/9906113.
- [27] Shelah, S., Stanley, L., A combinatorial forcing for coding the universe by a real when there are no sharps, J. Symbolic Logic 60 (1995), 1-35, math. LO/9311204.
- [28] Shelah, S., More on non-elementary properness, (in preparation).
- [29] Zapletal, J., Descriptive Set Theory and Definable Forcing, Mem. Amer. Math. Soc. 167(793), Providence, RI, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0041