Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present new semilocal convergence theorems for Newton methods in a Banach space. Using earlier general conditions we find more precise error estimates on the distances involved using the majorant principle. Moreover we provide a better information on the location of the solution. In the special case of Newton's method under Lipschitz conditions we show that the famous Newton-Kantorovich hypothesis having gone unchallenged for a long time can be weakened under the same hypotheses/computational cost.
Wydawca
Czasopismo
Rocznik
Tom
Strony
287--299
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Department of Mathematics Cameron University Lawton, OK 73505 USA, ioannisa@cameron.edu
Bibliografia
- [1] Argyros, I. K., Relation between forcing sequences and inexact Newton iterates in Banach space, Computing 63 (1999), 131-144.
- [2] Argyros, I. K., Newton methods on Banach spaces with a convergence structure and applications, Comput. Math. Appl. 40(1) (2000), 37-48.
- [3] Argyros, I. K., Advances in the Efficiency of Computational Methods and Applications, World Scientific Publ. Co., River Edge, NJ, 2000.
- [4] Argyros, I. K., Szidarovszky, F., The Theory and Applications of Iteration Methods, CRC Press, Boca Raton, FL, 1993.
- [5] De Pascale, E., Zabrejko, P. P., New convergence criterion for the Newton-Kantorovich method and some applications to nonlinear integral equations, Rend. Sem. Mat. Univ. Padova 100 (1998), 211-230.
- [6] Gutierrez, J. M., A new semilocal convergence theorem for Newton’s method, J. Cornput. Appl. Math. 79 (1997), 131-145.
- [7] Kantorovich, L. V., Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.
- [8] Potra, F. A., On Q-order and R-order of convergence, J. Optim. Theory Appl. 63(3) (1989), 415-431.
- [9] Yamamoto, T., A convergence theorem for Newton-like methods in Banach space, Numer. Math. 51 (1987), 545-557.
- [10] Ypma, T. J., Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21(3) (1984), 583-590.
- [11] Zabrejko, P. P., Nguen, D. F., The majorant method in the theory of Newton-Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim. 9 (1987), 671-684.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.