PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On continuous selection problems for multivalued mappings with the local intersection property in hyperconvex metric spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study fixed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.
Wydawca
Rocznik
Strony
249--260
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Department of Mathematics Yunnan Normal University Kunming, Yunnan 650092 P. R. China
autor
  • Department of Mathematics, The University of Queensland, Brisbane Qld 4072, Australia
autor
  • Department of Mathematics, The University of Queensland, Brisbane Qld 4072, Australia
Bibliografia
  • [1] Aronszajn, N., Panitchpakdi, P., Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439.
  • [2] Aubin, J. P., Ekeiand, I., Applied Nonlinear Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.
  • [3] Baillon, J. B., Nonexpansive mapping and hyperconvex spaces, in “Fixed Point Theory and Its Applications”, Contemp. Maths. 72, Amer. Math. Soc., Providence, Ш, 1988, 11-19.
  • [4] Fan, K., A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305-310.
  • [5] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
  • [6] Khamsi, M. A., Lin, M., Sine, R. C., On the fixed points of commuting nonexpansive maps in hyperconvex spaces, J. Math. Anal. Appl. 168 (1992), 372-380.
  • [7] Khamsi, M. A., Reich, S., Nonexpansive mappings and semigroups in hyperconvex spaces, Math. Japon. 35 (1990), 467-471.
  • [8] Khamsi, M. A., K K M and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996), 298-306.
  • [9] Khamsi, M. A., Kirk, W. A., Yafiez, С. M., Fixed point and selection theorems in hyperconvex metric spaces, Proc. Amer. Math. Soc. 128(11) (2000), 3275-3283.
  • [10] Kirk, W. A., Fixed point theory for nonexpansive mappings. II, in “Fixed Points and Nonexpansive Mappings”, Contemp. Math. 18, Amer. Math. Soc., Providence, RI, 1983, 121-140.
  • [11] Kirk, W. A., Continuous mappings in compact hyperconvex metric spaces, Numer. Funct. Anal. Optim. 17(1996), 599-603.
  • [12] Kirk, W. A., Sims, B., Yuan, G. X.-Z., The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39 (2000), 611-627.
  • [13] Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Springer, New York, 1974.
  • [14] Park, S., Bae, J. S., Kang, H. K., Geometric properties, minimax inequalities, and fixed point theorems on convex spaces, Proc. Amer. Math. Soc. 121(2) (1994), 429- 439.
  • [15] Sine, R. C., Hyperconvexity and approximate fixed points. Nonlinear Anal. 13 (1989), 863-869.
  • [16] Sine, R. C., On nonlinear contraction semigroups in sup-norm spaces, Nonlinear Anal. 3 (1979), 885-890.
  • [17] Soardi, P. M., Existence of fixed, points of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), 25-29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.