PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some nonlinear problems in hyperconvex metric spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we give a coincidence theorem, a minimax theorem, a section theorem, an intersection theorem and two existence theorems of solutions for generalized quasi-variational inequalities in hyperconvex metric spaces.
Wydawca
Rocznik
Strony
225--235
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Department of Mathematics Kunming Junior Normal College Kunming Yunnan 650031 People`s Republic of China, zhanghl1959@yahoo.com.cn
Bibliografia
  • [1] Aronszajn, N., Panitchpakdi, P., Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439.
  • [2] Aubin, J. P., Ekeland, I., Applied Nonlinear Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.
  • [3] Baillon, J. B., Nonexpansive mapping and hyperconvex spaces, in “Fixed Point Theory and Its Applications”, Contemp. Math. 72, Amer. Math. Soc., Providence, RI, 1988, 11-19.
  • [4] Goebel, K., Kirk, W. A., Topics in Metric Fixed Theory, Cambridge University Press, Cambridge, 1990.
  • [5] Khamsi, M. A., Lin, M., Sine, R. C., On the fixed points of commuting nonexpansive maps in hyperconvex spaces, J. Math. Anal. Appl. 168 (1992), 372-380.
  • [6] Khamsi, M. A., Reich, S., Nonexpansive mappings and simigroups in hyperconvex spaces, Math. Japon. 35 (1990), 467-471.
  • [7] Kirk, W. A., Fixed point theory for nonexpansive mapping. II, in “Fixed Point and Nonexpansive Mappings”, Contemp. Math. 18, Amer. Math. Soc., Providence, RI, 1983, 121-140.
  • [8] Kirk, W. A., Continuous mappings in compact hyperconvex metric spaces, Numer. Funct. Anal. Optim. 17 (1996), 599-603.
  • [9] Kirk, W. A., Sims, B., Yuan, G. X.-Z., The Knaster-Kuratouiski and Mazurkiewicz theory in hyperconvex metric spaces and some its applications, Nonlinear Anal. 39 (2000), 611-627.
  • [10] Kirk, W. A., Shin, S. S., Fixed point theorems in hyperconvex spaces, Houston J. Math. 23 (1997), 175-188.
  • [11] Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
  • [12] Lin, M., Sine, R. C., Retractions on the fixed point set of semigroups of nonexpansive maps in hyperconvex spaces, Nonlinear Anal. 15 (1990), 943-954.
  • [13] Park, S., Continuous selection theorems in generalized convex spaces, Numer. Funct. Anal. Optim. 25 (1999), 567-583.
  • [14] Park, S., Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), 869-879.
  • [15] Sine, R. C., On nonlinear contraction semigroups in sup-norm spaces, Nonlinear Anal. 3 (1979), 885-890.
  • [16] Sine, R. C., Hyperconvexity and nonexpansive multifunctions, Trans. Amer. Math. Soc. 315 (1989), 755-767.
  • [17] Sine, R. C., Hyperconvexity and approximate fixed points, Nonlinear Anal. 13 (1989), 863-869.
  • [18] Soardi, P. M., Existence of fixed point of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), 25-29.
  • [19] Su, С . H., Sehgal, V. M., Some fixed point theorems for condensing multifunctions in locally convex spaces, Proc. Amer. Math. Soc. 50 (1975), 150-154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.