PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On noncoercive elliptic problems with discontinuities

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper using the critical point theory of Chang [4] for locally Lipschitz functionals we prove an existence theorem for non-coercive Neumann problems with discontinuous nonlinearities. We use the mountain-pass theorem to obtain a nontrivial solution.
Wydawca
Rocznik
Strony
211--223
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • University of The Aegean Department of Statistics and Actuarial Science Karlovassi, 83200 Samos, Greece, nick@aegean.gr
Bibliografia
  • [1] Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.
  • [2] Ambrosetti, A., Badiale, M., The dual variational principle and elliptic problems with discontinuous nonlinearities, J. Math. Anal. Appl. 140(2) (1989), 363-273.
  • [3] Bonder, J. F., Rossi, J. D., Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl. 263 (2001), 195-223.
  • [4] Chang, К. C., Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
  • [5] Clarke, F., Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc., New York, 1983.
  • [6] Costa, D. G., Goncalves, J. V., Critical point theory for nondifferentiable functionals and applications, J. Math. Anal. Appl. 153 (1990), 470-485.
  • [7] de Figueiredo, D. G., Lectures on the Ekeland Variational Principle with Applications and Detours, Lectures on Mathematics and Physics 81, Tata Institute of Fundamental Research, Bombay, Springer-Verlag, Berlin, 1989.
  • [8] Drabek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, de Gruyter Series in Nonlinear Analysis and Applications 5, Walter de Gruyter & Co., Berlin, 1997.
  • [9] Heikkila, S., Lakshikantham, V., Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, 1994.
  • [10] Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.
  • [11] Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume II: Applications, Kluwer Academic Publishers, Dordrecht, 2000.
  • [12] Kenmochi, N., Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan 27(1) (1975), 121-149.
  • [13] Motreanu, D., Naniewicz, Z., Discontinuous semilinear problems in vector-valued function spaces, Differential Integral Equations 9 (1996), 581-598.
  • [14] Motreanu, D., Naniewicz, Z., A topological approach to hemivariational inequalities with unilateral growth condition, J. Appl. Anal. 7 (2001), 23-41.
  • [15] Stuart, C. A., Tolland, J. F., A variational method for boundary value problems with discontinuous nonlinearities, J. London Math. Soc. (2) 21 (1980), 319-328.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.