PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On boundary value problem for a nonlocal elliptic equation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existence of a positive radial solution to the Dirichlet boundary value problem for the second order elliptic equation [wzór], where U = B(0, R) \ ‾B(0, ρ), with weak assumptions on the nonlinear term f, is proved. The method based on the Krasnosel'skii Fixed Point Theorem enables to find many solutions to the problem. Solutions for the same problem but with U = B(0, R) and with nonlinear term f depending explicitely on |x| are found as well.
Wydawca
Rocznik
Strony
201--209
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
  • Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland
  • Faculty of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland
Bibliografia
  • [1] Bebernes, J., Lacey, A. A., Global existence and finite-time blow-up for a class of nonlocal parabolic problems, Adv. Differential Equations 2(6) (1997), 927-953.
  • [2] Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Acad. Press, Inc., Boston, MA, 1988.
  • [3] Krasnosel’skii, M., Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, 1964.
  • [4] Krzywicki, A., Nadzieja, T., Nonlocal elliptic problems. Evolution equations: existence, regularity and singularities, Banach Center Publ. 52 (2000), Polish Acad. Sci., Warsaw, 147-152.
  • [5] Ni, W., Nussbaum, N., Uniqueness and nonuniqueness for positive radial solutions of ∆u + f(u,r) = 0, Comm. Pure Appl. Math. 38 (1985), 67-108.
  • [6] Przeradzki, B., Stańczy, R., Positive solutions for sublinear elliptic equations, Colloq. Math. 92 (2002), 141-151.
  • [7] Stańczy, R., Nonlocal elliptic equations, Nonlinear Anal. 47 (2001), 3579-3584.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.